Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f2c7c9bc
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2c7c9bc
编写于
2月 22, 2017
作者:
W
wangkuiyi
提交者:
GitHub
2月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1337 from lzhao4ever/topk-error
Add top-k error
上级
59ca13a3
046349dd
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
236 addition
and
122 deletion
+236
-122
paddle/cuda/include/hl_matrix.h
paddle/cuda/include/hl_matrix.h
+0
-13
paddle/cuda/include/hl_top_k.h
paddle/cuda/include/hl_top_k.h
+27
-1
paddle/cuda/include/stub/hl_matrix_stub.h
paddle/cuda/include/stub/hl_matrix_stub.h
+10
-2
paddle/cuda/src/hl_cuda_matrix.cu
paddle/cuda/src/hl_cuda_matrix.cu
+0
-53
paddle/cuda/src/hl_top_k.cu
paddle/cuda/src/hl_top_k.cu
+78
-0
paddle/gserver/evaluators/Evaluator.cpp
paddle/gserver/evaluators/Evaluator.cpp
+21
-1
paddle/gserver/layers/Layer.h
paddle/gserver/layers/Layer.h
+1
-0
paddle/gserver/tests/test_Evaluator.cpp
paddle/gserver/tests/test_Evaluator.cpp
+1
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+53
-31
paddle/math/Matrix.h
paddle/math/Matrix.h
+6
-3
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+12
-7
paddle/parameter/Parameter.cpp
paddle/parameter/Parameter.cpp
+0
-4
proto/ModelConfig.proto
proto/ModelConfig.proto
+4
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+3
-0
python/paddle/trainer_config_helpers/evaluators.py
python/paddle/trainer_config_helpers/evaluators.py
+10
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+10
-7
未找到文件。
paddle/cuda/include/hl_matrix.h
浏览文件 @
f2c7c9bc
...
...
@@ -69,19 +69,6 @@ extern void hl_sequence_softmax_forward(real* A_d,
const
int
*
index
,
int
numSequence
);
/**
* @brief Matrix classification error.
*
* @param[in] A_d input matrix (M x N).
* @param[in] B_d input vector (M x 1).
* @param[out] C_d output vector (M x 1).
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*
*/
extern
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
);
/**
* @brief Matrix cross entropy.
*
...
...
paddle/cuda/include/hl_top_k.h
浏览文件 @
f2c7c9bc
...
...
@@ -58,4 +58,30 @@ extern void hl_sparse_matrix_top_k(real* topVal,
int
beamSize
,
int
numSamples
);
#endif
/* HL_TOP_K_H_ */
/**
* @brief Matrix classification error.
*
* @param[out] topVal top k element.
* @param[in] ldv leading dimension of topVal.
* @param[out] topIds top k index.
* @param[in] src input value.
* @param[in] lds leading dimension of src.
* @param[in] dim width of input value.
* @param[in] topkSize size of top k element.
* @param[in] numSamples height of input value.
* @param[in] label ground truth label.
* @param[out] recResult top-k classification error.
*
*/
extern
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
);
#endif // HL_TOP_K_H_
paddle/cuda/include/stub/hl_matrix_stub.h
浏览文件 @
f2c7c9bc
...
...
@@ -35,8 +35,16 @@ inline void hl_sequence_softmax_forward(real* A_d,
inline
void
hl_matrix_softmax_derivative
(
real
*
grad_d
,
real
*
output_d
,
real
*
sftmaxSum_d
,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
)
{}
inline
void
hl_matrix_cross_entropy
(
real
*
A_d
,
real
*
C_d
,
int
*
label_d
,
int
dimM
,
int
dimN
)
{}
...
...
paddle/cuda/src/hl_cuda_matrix.cu
浏览文件 @
f2c7c9bc
...
...
@@ -265,59 +265,6 @@ void hl_matrix_softmax_derivative(real *grad_d,
CHECK_SYNC
(
"hl_matrix_softmax_derivative failed"
);
}
template
<
int
blockSize
>
__global__
void
KeMatrixClassificationError
(
real
*
in_A
,
int
*
in_B
,
real
*
out_C
,
int
dimN
)
{
__shared__
real
max_s
[
blockSize
];
__shared__
int
max_l
[
blockSize
];
const
int
tid
=
threadIdx
.
x
;
const
int
rowId
=
blockIdx
.
x
;
max_s
[
tid
]
=
-
1e30
f
;
in_A
+=
rowId
*
dimN
;
real
tmp
;
for
(
int
colId
=
tid
;
colId
<
dimN
;
colId
+=
blockSize
)
{
tmp
=
in_A
[
colId
];
if
(
max_s
[
tid
]
<
tmp
)
{
max_s
[
tid
]
=
tmp
;
max_l
[
tid
]
=
colId
;
}
}
__syncthreads
();
for
(
int
stride
=
blockSize
/
2
;
stride
>
0
;
stride
=
stride
/
2
)
{
if
(
tid
<
stride
)
{
if
(
max_s
[
tid
]
<
max_s
[
tid
+
stride
])
{
max_s
[
tid
]
=
max_s
[
tid
+
stride
];
max_l
[
tid
]
=
max_l
[
tid
+
stride
];
}
}
__syncthreads
();
}
__syncthreads
();
if
(
tid
==
0
)
{
out_C
[
rowId
]
=
(
max_l
[
0
]
==
in_B
[
rowId
]
?
0
:
1.0
f
);
}
}
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
)
{
CHECK_NOTNULL
(
A_d
);
CHECK_NOTNULL
(
B_d
);
CHECK_NOTNULL
(
C_d
);
// each sample is calculated by one block
KeMatrixClassificationError
<
1024
><<<
dimM
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
A_d
,
B_d
,
C_d
,
dimN
);
CHECK_SYNC
(
"hl_matrix_classification_error"
);
}
__global__
void
KeMatrixMultiBinaryCrossEntropy
(
real
*
output
,
real
*
entropy
,
int
*
row
,
...
...
paddle/cuda/src/hl_top_k.cu
浏览文件 @
f2c7c9bc
...
...
@@ -384,3 +384,81 @@ void hl_sparse_matrix_top_k(real* topVal, int ldv,
CHECK_SYNC
(
"hl_sparse_matrix_top_k failed"
);
}
/**
* Each block compute one sample.
* In a block:
* 1. every thread get top maxLength value;
* 2. merge to shTopK, block reduce and get max value;
* 3. go to the second setp, until one thread's topK value is null;
* 4. go to the first setp, until get the topK value.
*/
template
<
int
maxLength
,
int
blockSize
>
__global__
void
KeMatrixTopKClassificationError
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
beamSize
,
int
*
label
,
real
*
recResult
)
{
__shared__
Pair
shTopK
[
blockSize
];
__shared__
int
maxId
[
blockSize
/
2
];
const
int
tid
=
threadIdx
.
x
;
const
int
warp
=
threadIdx
.
x
/
32
;
src
+=
blockIdx
.
x
*
lds
;
topVal
+=
blockIdx
.
x
*
ldv
;
topIds
+=
blockIdx
.
x
*
beamSize
;
Pair
topK
[
maxLength
];
// NOLINT
int
beam
=
maxLength
;
Pair
max
;
bool
isEmpty
=
false
;
bool
firstStep
=
true
;
int
topkSize
=
beamSize
;
for
(
int
k
=
0
;
k
<
maxLength
;
k
++
)
{
topK
[
k
].
set
(
-
HL_FLOAT_MAX
,
-
1
);
}
while
(
beamSize
)
{
threadGetTopK
<
maxLength
,
blockSize
>
(
topK
,
beam
,
beamSize
,
src
,
firstStep
,
isEmpty
,
max
,
dim
,
tid
);
shTopK
[
tid
]
=
topK
[
0
];
blockReduce
<
maxLength
,
blockSize
>
(
shTopK
,
maxId
,
topK
,
&
topVal
,
&
topIds
,
beam
,
beamSize
,
tid
,
warp
);
}
__syncthreads
();
if
(
tid
==
0
)
{
for
(
int
i
=
0
;
i
<
topkSize
;
i
++
)
{
if
(
*--
topIds
==
label
[
blockIdx
.
x
])
{
recResult
[
blockIdx
.
x
]
=
0
;
break
;
}
recResult
[
blockIdx
.
x
]
=
1.0
f
;
}
}
}
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
)
{
CHECK_NOTNULL
(
topVal
);
CHECK_NOTNULL
(
topIds
);
CHECK_NOTNULL
(
src
);
if
(
topkSize
>
dim
)
topkSize
=
dim
;
dim3
threads
(
256
,
1
);
dim3
grid
(
numSamples
,
1
);
KeMatrixTopKClassificationError
<
5
,
256
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
topVal
,
ldv
,
topIds
,
src
,
lds
,
dim
,
topkSize
,
label
,
recResult
);
CHECK_SYNC
(
"hl_matrix_top_k classification error failed"
);
}
paddle/gserver/evaluators/Evaluator.cpp
浏览文件 @
f2c7c9bc
...
...
@@ -39,6 +39,14 @@ void Evaluator::eval(const NeuralNetwork& nn) {
*/
class
ClassificationErrorEvaluator
:
public
Evaluator
{
public:
/*
ClassificationErrorEvaluator() : totalScore2_(0) {}
virtual void start() {
Evaluator::start();
totalScore2_ = 0;
} */
virtual
void
updateSamplesNum
(
const
std
::
vector
<
Argument
>&
arguments
)
{
if
(
3
==
arguments
.
size
())
{
numSamples_
+=
arguments
[
2
].
value
->
getSum
();
...
...
@@ -76,9 +84,11 @@ public:
1
,
/* trans= */
false
,
useGpu
(
arguments
[
0
].
deviceId
));
errorMat
->
zeroMem
();
if
(
label
!=
nullptr
)
{
errorMat
->
classificationError
(
*
output
,
*
label
);
errorMat
->
classificationError
(
*
output
,
*
label
,
config_
.
top_k
()
);
}
else
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
multiBinaryLabel
.
get
())
||
dynamic_cast
<
GpuSparseMatrix
*>
(
multiBinaryLabel
.
get
()))
{
errorMat
->
classificationErrorMulti
(
...
...
@@ -94,6 +104,16 @@ public:
return
errorMat
;
}
void
printStats
(
std
::
ostream
&
os
)
const
{
if
(
config_
.
top_k
()
==
1
)
{
os
<<
config_
.
name
()
<<
"="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
);
}
else
{
os
<<
" top_"
<<
config_
.
top_k
()
<<
"_error="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
);
}
}
virtual
real
evalImp
(
std
::
vector
<
Argument
>&
arguments
)
{
MatrixPtr
errorMat
=
calcError
(
arguments
);
return
errorMat
->
getSum
();
...
...
paddle/gserver/layers/Layer.h
浏览文件 @
f2c7c9bc
...
...
@@ -311,6 +311,7 @@ public:
return
*
output
->
second
;
}
else
{
LOG
(
FATAL
)
<<
"No specific output "
<<
str
;
return
*
((
Argument
*
)
nullptr
);
}
}
}
...
...
paddle/gserver/tests/test_Evaluator.cpp
浏览文件 @
f2c7c9bc
...
...
@@ -129,6 +129,7 @@ void testEvaluatorAll(TestConfig testConf,
TEST
(
Evaluator
,
classification_error
)
{
TestConfig
config
;
config
.
evaluatorConfig
.
set_type
(
"classification_error"
);
config
.
evaluatorConfig
.
set_top_k
(
5
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"output"
,
50
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"label"
,
50
});
...
...
paddle/math/Matrix.cpp
浏览文件 @
f2c7c9bc
...
...
@@ -732,6 +732,7 @@ void GpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
size_t
beam
=
maxVal
.
getWidth
();
CHECK_EQ
(
maxIds
.
getSize
(),
numSamples
*
beam
);
CHECK_EQ
(
maxVal
.
getHeight
(),
numSamples
);
CHECK_EQ
(
maxVal
.
getWidth
(),
beam
);
hl_matrix_top_k
(
maxVal
.
getData
(),
maxVal
.
getStride
(),
...
...
@@ -792,19 +793,32 @@ void GpuMatrix::maxoutBackward(Matrix& a,
}
/*calulate the error of classification */
void
GpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
auto
output_ptr
=
dynamic_cast
<
const
GpuMatrix
*>
(
&
output
);
auto
label_ptr
=
dynamic_cast
<
const
GpuIVector
*>
(
&
label
);
CHECK
(
output_ptr
&&
label_ptr
)
<<
"Invalid argument pointer"
;
CHECK
(
height_
==
output_ptr
->
height_
&&
width_
==
1
)
void
GpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
)
{
auto
gpuOutput
=
dynamic_cast
<
GpuMatrix
*>
(
&
output
);
auto
gpuLabel
=
dynamic_cast
<
GpuIVector
*>
(
&
label
);
size_t
numSamples
=
this
->
getHeight
();
GpuMatrixPtr
gpuTopVal
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
topkSize
);
GpuIVectorPtr
gpuTopIds
=
std
::
make_shared
<
GpuIVector
>
(
numSamples
*
topkSize
);
CHECK
(
gpuOutput
&&
gpuLabel
)
<<
"Invalid argument pointer"
;
CHECK
(
gpuTopVal
&&
gpuTopIds
)
<<
"Allocate GPU memory failed"
;
CHECK
(
gpuLabel
->
getSize
()
==
numSamples
)
<<
"Vector size is not equal"
;
CHECK
(
numSamples
==
gpuOutput
->
getHeight
()
&&
this
->
getWidth
()
==
1
)
<<
"Matrix dimensions are not equal"
;
hl_matrix_classification_error
((
real
*
)
output_ptr
->
data_
,
(
int
*
)
label_ptr
->
getData
(),
data_
,
height_
,
output_ptr
->
width_
);
size_t
dim
=
gpuOutput
->
getWidth
();
hl_matrix_classification_error
(
gpuTopVal
->
getData
(),
gpuTopVal
->
getStride
(),
gpuTopIds
->
getData
(),
gpuOutput
->
getData
(),
gpuOutput
->
getStride
(),
dim
,
topkSize
,
numSamples
,
gpuLabel
->
getData
(),
this
->
getData
());
}
/* copy -log(output[i * width + label]) to this->data[i] */
...
...
@@ -3039,7 +3053,7 @@ void CpuMatrix::rowMax(Matrix& max) {
max
.
maxRows
(
*
this
);
}
/*
get beam size of max ids and values
*/
/*
Get the top k elements of each row of this matrix
*/
void
CpuMatrix
::
rowMax
(
IVector
&
maxIds
,
Matrix
&
maxVal
)
{
CHECK
(
isContiguous
());
CHECK
(
!
maxIds
.
useGpu
()
&&
!
maxVal
.
useGpu
())
<<
"Matrix type are not equal"
;
...
...
@@ -3047,6 +3061,7 @@ void CpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
size_t
beam
=
maxVal
.
getWidth
();
CHECK_EQ
(
maxIds
.
getSize
(),
numSamples
*
beam
);
CHECK_EQ
(
maxVal
.
getHeight
(),
numSamples
);
CHECK_EQ
(
maxVal
.
getWidth
(),
beam
);
real
*
a
=
getData
();
int
*
s
=
maxIds
.
getData
();
...
...
@@ -3198,32 +3213,39 @@ void CpuMatrix::rowNormalizeL1(Matrix& out) {
}
/* calulate classification error */
void
CpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
output
));
CHECK
(
dynamic_cast
<
const
CpuIVector
*>
(
&
label
));
void
CpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
)
{
size_t
numSamples
=
this
->
getHeight
();
auto
cpuOutput
=
dynamic_cast
<
CpuMatrix
*>
(
&
output
);
auto
cpuLabel
=
dynamic_cast
<
CpuIVector
*>
(
&
label
);
IVectorPtr
cpuTopIds
=
std
::
make_shared
<
CpuIVector
>
(
numSamples
*
topkSize
);
MatrixPtr
cpuTopVal
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
topkSize
);
CHECK
(
cpuOutput
&&
cpuLabel
)
<<
"Invalid argument pointer"
;
CHECK
(
cpuTopIds
&&
cpuTopVal
)
<<
"Allocate cpu memory failed"
;
CHECK
(
cpuLabel
->
getSize
()
==
numSamples
)
<<
"Vector size is not equal"
;
CHECK
(
cpuOutput
->
getHeight
()
==
numSamples
&&
this
->
getWidth
()
==
1
)
<<
"Matrix dimensions are not equal"
;
CHECK_EQ
(
getWidth
(),
(
size_t
)
1
);
size_t
numSamples
=
getHeight
();
CHECK_EQ
(
label
.
getSize
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
// top k matrix classification
cpuOutput
->
rowMax
(
*
cpuTopIds
,
*
cpuTopVal
);
size_t
dim
=
output
.
getWidth
();
real
*
out
=
output
.
getData
();
int
*
lbl
=
label
.
getData
();
real
maxData
=
0.0
;
int
maxIndex
=
-
1
;
size_t
dim
=
cpuOutput
->
getWidth
();
real
*
result
=
this
->
getData
();
int
*
ids
=
cpuTopIds
->
getData
();
int
*
lbl
=
cpuLabel
->
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
CHECK_GE
(
lbl
[
i
],
0
);
CHECK_LT
((
size_t
)
lbl
[
i
],
dim
);
maxData
=
out
[
i
*
dim
];
maxIndex
=
0
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
if
(
maxData
<
out
[
i
*
dim
+
j
])
{
maxIndex
=
j
;
maxData
=
out
[
i
*
dim
+
j
];
for
(
size_t
j
=
0
;
j
<
topkSize
;
++
j
)
{
if
(
ids
[
j
+
i
*
topkSize
]
==
lbl
[
i
])
{
result
[
i
]
=
0
;
break
;
}
result
[
i
]
=
1.0
f
;
}
getData
()[
i
]
=
(
maxIndex
!=
lbl
[
i
]);
}
}
...
...
paddle/math/Matrix.h
浏览文件 @
f2c7c9bc
...
...
@@ -836,8 +836,11 @@ public:
* output[i] = 1 if row i is an error.
*
* output[i] = 0 if row i is correct.
*
*/
virtual
void
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
virtual
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
...
...
@@ -1314,7 +1317,7 @@ public:
void
check
(
std
::
ostream
&
os
,
Matrix
&
refMat
,
bool
printDiff
=
true
);
void
randomizeUniform
();
void
classificationError
(
Matrix
&
output
,
IVector
&
label
);
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
);
void
convExpand
(
Matrix
&
feature
,
int
feaImgHeight
,
...
...
@@ -1739,7 +1742,7 @@ public:
void
randomizeUniform
();
void
classificationError
(
Matrix
&
output
,
IVector
&
label
);
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
);
void
addByBitCode
(
size_t
numClasses
,
const
IVector
&
codes
,
const
Matrix
&
vec
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
f2c7c9bc
...
...
@@ -764,7 +764,7 @@ TEST(Matrix, paramReluBackwardDiff) {
}
}
void
testClassificationError
(
int
numSamples
,
int
dim
)
{
void
testClassificationError
(
int
numSamples
,
int
dim
,
int
topkSize
)
{
MatrixPtr
cpuError
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
gpuError
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
cpuOutput
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
...
...
@@ -777,17 +777,22 @@ void testClassificationError(int numSamples, int dim) {
gpuOutput
->
copyFrom
(
*
cpuOutput
);
gpuLabel
->
copyFrom
(
*
cpuLabel
);
cpuError
->
classificationError
(
*
cpuOutput
,
*
cpuLabel
);
gpuError
->
classificationError
(
*
gpuOutput
,
*
gpuLabel
);
cpuError
->
classificationError
(
*
cpuOutput
,
*
cpuLabel
,
topkSize
);
gpuError
->
classificationError
(
*
gpuOutput
,
*
gpuLabel
,
topkSize
);
TensorCheckEqual
(
*
cpuError
,
*
gpuError
);
}
TEST
(
Matrix
,
classificationError
)
{
for
(
auto
numSamples
:
{
1
,
10
,
100
,
1000
,
70000
})
{
for
(
auto
dim
:
{
1
,
10
,
100
,
1000
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" dim="
<<
dim
;
testClassificationError
(
numSamples
,
dim
);
for
(
auto
numSamples
:
{
1
,
5
,
31
,
90
,
150
,
300
})
{
for
(
auto
dim
:
{
1
,
5
,
8
,
10
,
15
,
64
,
80
,
120
,
256
,
300
,
1280
,
5120
,
50000
})
{
for
(
auto
topkSize
:
{
1
,
5
,
10
,
20
,
40
,
(
int
)
rand
()
%
dim
+
1
})
{
if
(
topkSize
>
dim
)
continue
;
VLOG
(
3
)
<<
" sample= "
<<
numSamples
<<
" topkSize= "
<<
topkSize
<<
" dim= "
<<
dim
;
testClassificationError
(
numSamples
,
dim
,
topkSize
);
}
}
}
}
...
...
paddle/parameter/Parameter.cpp
浏览文件 @
f2c7c9bc
...
...
@@ -375,10 +375,6 @@ bool Parameter::load(const std::string& filename) {
std
::
ifstream
fs
(
filename
,
std
::
ios_base
::
binary
);
if
(
!
fs
)
{
LOG
(
INFO
)
<<
"missing parameters ["
<<
filename
<<
"] while loading model."
;
if
(
isStatic
())
{
LOG
(
FATAL
)
<<
getName
()
<<
" is static but missing, not allowed."
;
return
false
;
}
if
(
kMissParameterFail
==
FLAGS_load_missing_parameter_strategy
)
{
LOG
(
FATAL
)
<<
getName
()
<<
" missing, not allowed."
;
return
false
;
...
...
proto/ModelConfig.proto
浏览文件 @
f2c7c9bc
...
...
@@ -475,6 +475,10 @@ message EvaluatorConfig {
// Used by ChunkEvaluator
// chunk of these types are not counted
repeated
int32
excluded_chunk_types
=
12
;
// Used by ClassificationErrorEvaluator
// top # classification error
optional
int32
top_k
=
13
[
default
=
1
];
}
message
LinkConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
f2c7c9bc
...
...
@@ -1253,6 +1253,7 @@ def Evaluator(
dict_file
=
None
,
result_file
=
None
,
num_results
=
None
,
top_k
=
None
,
delimited
=
None
,
excluded_chunk_types
=
None
,
):
evaluator
=
g_config
.
model_config
.
evaluators
.
add
()
...
...
@@ -1280,6 +1281,8 @@ def Evaluator(
evaluator
.
result_file
=
result_file
if
num_results
is
not
None
:
evaluator
.
num_results
=
num_results
if
top_k
is
not
None
:
evaluator
.
top_k
=
top_k
if
delimited
is
not
None
:
evaluator
.
delimited
=
delimited
...
...
python/paddle/trainer_config_helpers/evaluators.py
浏览文件 @
f2c7c9bc
...
...
@@ -71,6 +71,7 @@ def evaluator_base(
result_file
=
None
,
num_results
=
None
,
delimited
=
None
,
top_k
=
None
,
excluded_chunk_types
=
None
,
):
"""
Evaluator will evaluate the network status while training/testing.
...
...
@@ -104,12 +105,15 @@ def evaluator_base(
:param weight: An input layer which is a weight for each sample.
Each evaluator may calculate differently to use this weight.
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
"""
# inputs type assertions.
assert
classification_threshold
is
None
or
isinstance
(
classification_threshold
,
float
)
assert
positive_label
is
None
or
isinstance
(
positive_label
,
int
)
assert
num_results
is
None
or
isinstance
(
num_results
,
int
)
assert
top_k
is
None
or
isinstance
(
top_k
,
int
)
if
not
isinstance
(
input
,
list
):
input
=
[
input
]
...
...
@@ -130,6 +134,8 @@ def evaluator_base(
dict_file
=
dict_file
,
result_file
=
result_file
,
delimited
=
delimited
,
num_results
=
num_results
,
top_k
=
top_k
,
excluded_chunk_types
=
excluded_chunk_types
,
)
...
...
@@ -139,6 +145,7 @@ def classification_error_evaluator(input,
label
,
name
=
None
,
weight
=
None
,
top_k
=
None
,
threshold
=
None
):
"""
Classification Error Evaluator. It will print error rate for classification.
...
...
@@ -167,6 +174,8 @@ def classification_error_evaluator(input,
then means not set weight. The larger weight it is, the more
important this sample is.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param threshold: The classification threshold.
:type threshold: float
:return: None.
...
...
@@ -178,6 +187,7 @@ def classification_error_evaluator(input,
input
=
input
,
label
=
label
,
weight
=
weight
,
top_k
=
top_k
,
classification_threshold
=
threshold
,
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
f2c7c9bc
...
...
@@ -2870,8 +2870,8 @@ def gru_step_layer(input,
:param name:
:param gate_act:
:param bias_attr:
:param param_attr: the parameter_attribute for transforming the output_mem
from previous step.
:param param_attr: the parameter_attribute for transforming the output_mem
from previous step.
:param layer_attr:
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -2882,10 +2882,10 @@ def gru_step_layer(input,
Layer
(
name
=
name
,
type
=
LayerType
.
GRU_STEP_LAYER
,
# The parameter here is for transforming the output_mem. The input has
# already been transformed outside this module so it does not need
# parameter associated with it.
# The parameter here is instead grouped with input is due to
# The parameter here is for transforming the output_mem. The input has
# already been transformed outside this module so it does not need
# parameter associated with it.
# The parameter here is instead grouped with input is due to
# backward model compatibility.
inputs
=
[
Input
(
input
.
name
,
**
param_attr
.
attr
),
output_mem
.
name
],
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
...
...
@@ -3536,6 +3536,7 @@ def classification_cost(input,
label
,
weight
=
None
,
name
=
None
,
top_k
=
None
,
evaluator
=
classification_error_evaluator
,
layer_attr
=
None
):
"""
...
...
@@ -3550,6 +3551,8 @@ def classification_cost(input,
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -3577,7 +3580,7 @@ def classification_cost(input,
assert
isinstance
(
e
.
for_classification
,
bool
)
assert
e
.
for_classification
e
(
name
=
e
.
__name__
,
input
=
input
,
label
=
label
,
weight
=
weight
)
e
(
name
=
e
.
__name__
,
input
=
input
,
label
=
label
,
weight
=
weight
,
top_k
=
top_k
)
if
not
isinstance
(
evaluator
,
collections
.
Sequence
):
evaluator
=
[
evaluator
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录