Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ee22a436
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ee22a436
编写于
10月 10, 2017
作者:
F
fengjiayi
提交者:
GitHub
10月 10, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4684 from reyoung/feature/parameter
Feature/parameter
上级
843ed8e3
f185af8d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
222 addition
and
30 deletion
+222
-30
doc/design/python_api.md
doc/design/python_api.md
+6
-6
paddle/framework/var_desc.cc
paddle/framework/var_desc.cc
+8
-0
paddle/framework/var_desc.h
paddle/framework/var_desc.h
+4
-0
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+3
-1
python/paddle/v2/framework/graph.py
python/paddle/v2/framework/graph.py
+134
-23
python/paddle/v2/framework/tests/test_parameter.py
python/paddle/v2/framework/tests/test_parameter.py
+27
-0
python/paddle/v2/framework/tests/test_variable.py
python/paddle/v2/framework/tests/test_variable.py
+40
-0
未找到文件。
doc/design/python_api.md
浏览文件 @
ee22a436
...
@@ -22,7 +22,7 @@ Whenever we create a block, we need to set its parent block to the current block
...
@@ -22,7 +22,7 @@ Whenever we create a block, we need to set its parent block to the current block
```
python
```
python
class
Program
(
objects
):
class
Program
(
objects
):
def
__init__
(
self
):
def
__init__
(
self
):
self
.
proto
=
core
.
NewProgram
()
# a C++ ProgramDesc pointer.
self
.
desc
=
core
.
NewProgram
()
# a C++ ProgramDesc pointer.
self
.
blocks
=
vector
<
Block
>
()
self
.
blocks
=
vector
<
Block
>
()
self
.
blocks
.
append
(
Block
(
self
,
-
1
))
# the global block
self
.
blocks
.
append
(
Block
(
self
,
-
1
))
# the global block
self
.
current_block
=
0
# initialized to the global block
self
.
current_block
=
0
# initialized to the global block
...
@@ -57,7 +57,7 @@ A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.m
...
@@ -57,7 +57,7 @@ A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.m
```
python
```
python
class
Block
(
objects
):
class
Block
(
objects
):
def
__init__
(
self
,
program
,
parent_idx
):
def
__init__
(
self
,
program
,
parent_idx
):
self
.
proto
=
core
.
NewBlock
(
program
.
proto
)
self
.
desc
=
core
.
NewBlock
(
program
.
desc
)
self
.
program
=
program
self
.
program
=
program
self
.
vars
=
map
<
string
,
Variable
>
()
self
.
vars
=
map
<
string
,
Variable
>
()
self
.
ops
=
vector
<
Operator
>
()
self
.
ops
=
vector
<
Operator
>
()
...
@@ -98,11 +98,11 @@ class Operator(object):
...
@@ -98,11 +98,11 @@ class Operator(object):
outputs
,
# dict<stirng, Variable>
outputs
,
# dict<stirng, Variable>
attrs
# dict<string, Any>
attrs
# dict<string, Any>
):
):
self
.
proto
=
core
.
NewOpDesc
(
block
.
proto
,
type
,
inputs
,
outputs
,
attrs
)
self
.
desc
=
core
.
NewOpDesc
(
block
.
desc
,
type
,
inputs
,
outputs
,
attrs
)
core
.
infer_shape
(
self
.
proto
,
inputs
,
outputs
)
core
.
infer_shape
(
self
.
desc
,
inputs
,
outputs
)
def
type
(
self
):
def
type
(
self
):
return
self
.
proto
.
type
()
return
self
.
desc
.
type
()
```
```
`Operator`
creates the
`OpDesc`
message in C++ space, so that it can call the
`InferShape`
function, which is in C++.
`Operator`
creates the
`OpDesc`
message in C++ space, so that it can call the
`InferShape`
function, which is in C++.
...
@@ -124,7 +124,7 @@ class Variable(object):
...
@@ -124,7 +124,7 @@ class Variable(object):
name
=
unique_name_generator
()
name
=
unique_name_generator
()
self
.
name
=
name
self
.
name
=
name
self
.
block
=
block
self
.
block
=
block
self
.
proto
=
core
.
NewVarDesc
(
block
.
proto
,
name
,
shape
,
lod_level
)
self
.
desc
=
core
.
NewVarDesc
(
block
.
desc
,
name
,
shape
,
lod_level
)
self
.
writer
=
None
self
.
writer
=
None
```
```
...
...
paddle/framework/var_desc.cc
浏览文件 @
ee22a436
...
@@ -32,5 +32,13 @@ std::vector<int64_t> VarDescBind::Shape() const {
...
@@ -32,5 +32,13 @@ std::vector<int64_t> VarDescBind::Shape() const {
DataType
VarDescBind
::
GetDataType
()
const
{
DataType
VarDescBind
::
GetDataType
()
const
{
return
desc_
.
lod_tensor
().
data_type
();
return
desc_
.
lod_tensor
().
data_type
();
}
}
void
VarDescBind
::
SetLoDLevel
(
int32_t
lod_level
)
{
desc_
.
mutable_lod_tensor
()
->
set_lod_level
(
lod_level
);
}
int32_t
VarDescBind
::
GetLodLevel
()
const
{
return
desc_
.
lod_tensor
().
lod_level
();
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/var_desc.h
浏览文件 @
ee22a436
...
@@ -66,6 +66,10 @@ class VarDescBind {
...
@@ -66,6 +66,10 @@ class VarDescBind {
DataType
GetDataType
()
const
;
DataType
GetDataType
()
const
;
void
SetLoDLevel
(
int32_t
lod_level
);
int32_t
GetLodLevel
()
const
;
private:
private:
VarDesc
desc_
;
VarDesc
desc_
;
};
};
...
...
paddle/pybind/protobuf.cc
浏览文件 @
ee22a436
...
@@ -166,7 +166,9 @@ void BindVarDsec(py::module &m) {
...
@@ -166,7 +166,9 @@ void BindVarDsec(py::module &m) {
.
def
(
"set_shape"
,
&
VarDescBind
::
SetShape
)
.
def
(
"set_shape"
,
&
VarDescBind
::
SetShape
)
.
def
(
"set_data_type"
,
&
VarDescBind
::
SetDataType
)
.
def
(
"set_data_type"
,
&
VarDescBind
::
SetDataType
)
.
def
(
"shape"
,
&
VarDescBind
::
Shape
,
py
::
return_value_policy
::
reference
)
.
def
(
"shape"
,
&
VarDescBind
::
Shape
,
py
::
return_value_policy
::
reference
)
.
def
(
"data_type"
,
&
VarDescBind
::
GetDataType
);
.
def
(
"data_type"
,
&
VarDescBind
::
GetDataType
)
.
def
(
"lod_level"
,
&
VarDescBind
::
GetLodLevel
)
.
def
(
"set_lod_level"
,
&
VarDescBind
::
SetLoDLevel
);
}
}
void
BindOpDesc
(
py
::
module
&
m
)
{
void
BindOpDesc
(
py
::
module
&
m
)
{
...
...
python/paddle/v2/framework/graph.py
浏览文件 @
ee22a436
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.core
as
core
import
collections
import
collections
import
numpy
as
np
import
copy
__all__
=
[
'Block'
,
'Variable'
,
'Program'
,
'Operator'
]
__all__
=
[
'Block'
,
'Variable'
,
'Program'
,
'Operator'
]
class
Variable
(
object
):
class
Variable
(
object
):
def
__init__
(
self
,
block
,
name
=
None
,
shape
=
None
,
dtype
=
None
,
def
__init__
(
self
,
lod_level
=
None
):
block
,
name
=
None
,
shape
=
None
,
dtype
=
None
,
lod_level
=
None
,
**
kwargs
):
self
.
block
=
block
self
.
block
=
block
if
name
is
None
:
if
name
is
None
:
name
=
Variable
.
_unique_var_name_
()
name
=
Variable
.
_unique_var_name_
()
self
.
proto
=
self
.
block
.
proto
.
new_var
(
name
)
try
:
self
.
desc
=
self
.
block
.
desc
.
var
(
name
)
is_new_var
=
False
except
core
.
EnforceNotMet
:
self
.
desc
=
self
.
block
.
desc
.
new_var
(
name
)
is_new_var
=
True
if
shape
is
not
None
:
if
shape
is
not
None
:
self
.
proto
.
set_shape
(
shape
)
if
is_new_var
:
self
.
desc
.
set_shape
(
shape
)
else
:
old_shape
=
self
.
shape
shape
=
tuple
(
shape
)
if
shape
!=
old_shape
:
raise
ValueError
(
"Variable {0} has been created before. the previous "
"shape is {1}; the new shape is {2}. They are not "
"matched."
.
format
(
self
.
name
,
old_shape
,
shape
))
if
dtype
is
not
None
:
if
dtype
is
not
None
:
# TODO(yuyang18): Convert dtype from numpy.dtype
if
not
isinstance
(
dtype
,
core
.
DataType
):
self
.
proto
.
set_data_type
(
dtype
)
dtype
=
Variable
.
_convert_np_dtype_to_dtype_
(
dtype
)
if
is_new_var
:
self
.
desc
.
set_data_type
(
dtype
)
else
:
old_dtype
=
self
.
data_type
()
if
dtype
!=
old_shape
:
raise
ValueError
(
"Variable {0} has been created before. "
"The previous data type is {1}; the new "
"data type is {2}. They are not "
"matched."
.
format
(
self
.
name
,
old_dtype
,
dtype
))
if
lod_level
is
not
None
:
if
lod_level
is
not
None
:
# TODO(yuyang18): set_lod_level is not defined.
if
is_new_var
:
self
.
proto
.
set_lod_level
(
lod_level
)
self
.
desc
.
set_lod_level
(
lod_level
)
else
:
if
lod_level
!=
self
.
lod_level
:
raise
ValueError
(
"Variable {0} has been created before. "
"The previous lod_level is {1}; the new "
"lod_level is {2}. They are not "
"matched"
.
format
(
self
.
name
,
self
.
lod_level
,
lod_level
))
self
.
block
.
vars
[
name
]
=
self
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
op
=
None
# TODO(yuyang18): Get methods
@
property
def
name
(
self
):
return
self
.
desc
.
name
()
@
property
def
shape
(
self
):
# convert to tuple, make it as same as numpy API.
return
tuple
(
self
.
desc
.
shape
())
@
property
def
data_type
(
self
):
return
self
.
desc
.
data_type
()
@
property
def
lod_level
(
self
):
return
self
.
desc
.
lod_level
()
@
staticmethod
@
staticmethod
def
_unique_var_name_
():
def
_unique_var_name_
():
uid
=
core
.
unique_integer
()
# unique during whole process.
uid
=
core
.
unique_integer
()
# unique during whole process.
return
"_generated_var_%d"
%
uid
return
"_generated_var_%d"
%
uid
@
staticmethod
def
_convert_np_dtype_to_dtype_
(
np_dtype
):
dtype
=
np
.
dtype
(
np_dtype
)
if
dtype
==
np
.
float32
:
return
core
.
DataType
.
FP32
elif
dtype
==
np
.
float64
:
return
core
.
DataType
.
FP64
elif
dtype
==
np
.
float16
:
return
core
.
DataType
.
FP16
elif
dtype
==
np
.
int32
:
return
core
.
DataType
.
INT32
elif
dtype
==
np
.
int16
:
return
core
.
DataType
.
INT16
elif
dtype
==
np
.
int64
:
return
core
.
DataType
.
INT64
elif
dtype
==
np
.
bool
:
return
core
.
DataType
.
BOOL
else
:
raise
ValueError
(
"Not supported numpy dtype "
+
str
(
dtype
))
class
Operator
(
object
):
class
Operator
(
object
):
def
__init__
(
self
,
def
__init__
(
self
,
block
,
block
,
proto
,
desc
,
type
=
None
,
type
=
None
,
inputs
=
None
,
inputs
=
None
,
outputs
=
None
,
outputs
=
None
,
attrs
=
None
):
attrs
=
None
):
self
.
block
=
block
self
.
block
=
block
self
.
proto
=
proto
self
.
desc
=
desc
if
type
is
not
None
:
if
type
is
not
None
:
# TODO.
# TODO.
pass
pass
...
@@ -58,36 +129,40 @@ class Operator(object):
...
@@ -58,36 +129,40 @@ class Operator(object):
# TODO
# TODO
pass
pass
# TODO: Getters
# TODO: Getters
class
Block
(
object
):
class
Block
(
object
):
def
__init__
(
self
,
program
,
idx
):
def
__init__
(
self
,
program
,
idx
):
self
.
proto
=
program
.
proto
.
block
(
idx
)
self
.
desc
=
program
.
desc
.
block
(
idx
)
self
.
vars
=
dict
()
# var_name --> var
self
.
vars
=
dict
()
# var_name --> var
self
.
ops
=
collections
.
deque
()
# operator list
self
.
ops
=
collections
.
deque
()
# operator list
self
.
program
=
program
self
.
program
=
program
@
property
@
property
def
parent_idx
(
self
):
def
parent_idx
(
self
):
return
self
.
proto
.
parent
return
self
.
desc
.
parent
@
property
@
property
def
idx
(
self
):
def
idx
(
self
):
return
self
.
proto
.
id
return
self
.
desc
.
id
def
create_var
(
self
,
*
args
,
**
kwargs
):
def
create_var
(
self
,
*
args
,
**
kwargs
):
return
Variable
(
self
,
*
args
,
**
kwargs
)
return
Variable
(
self
,
*
args
,
**
kwargs
)
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
global_block
=
self
.
program
.
global_block
()
return
Parameter
(
global_block
,
*
args
,
**
kwargs
)
def
append_op
(
self
,
*
args
,
**
kwargs
):
def
append_op
(
self
,
*
args
,
**
kwargs
):
op_
proto
=
self
.
proto
.
append_op
()
op_
desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
self
,
op_
proto
,
*
args
,
**
kwargs
)
op
=
Operator
(
self
,
op_
desc
,
*
args
,
**
kwargs
)
self
.
ops
.
append
(
op
)
self
.
ops
.
append
(
op
)
return
op
return
op
def
prepend_op
(
self
,
*
args
,
**
kwargs
):
def
prepend_op
(
self
,
*
args
,
**
kwargs
):
op_
proto
=
self
.
proto
.
prepend_op
()
op_
desc
=
self
.
desc
.
prepend_op
()
op
=
Operator
(
self
,
op_
proto
,
*
args
,
**
kwargs
)
op
=
Operator
(
self
,
op_
desc
,
*
args
,
**
kwargs
)
self
.
ops
.
appendleft
(
op
)
self
.
ops
.
appendleft
(
op
)
return
op
return
op
...
@@ -104,7 +179,7 @@ class Program(object):
...
@@ -104,7 +179,7 @@ class Program(object):
def
__init__
(
self
):
def
__init__
(
self
):
assert
not
hasattr
(
self
.
__class__
,
assert
not
hasattr
(
self
.
__class__
,
'_instance'
),
'Do not call constructor directly!'
'_instance'
),
'Do not call constructor directly!'
self
.
proto
=
core
.
ProgramDesc
.
instance
()
self
.
desc
=
core
.
ProgramDesc
.
instance
()
self
.
blocks
=
[
Block
(
self
,
0
)]
self
.
blocks
=
[
Block
(
self
,
0
)]
self
.
current_block_idx
=
0
self
.
current_block_idx
=
0
...
@@ -116,7 +191,7 @@ class Program(object):
...
@@ -116,7 +191,7 @@ class Program(object):
def
create_block
(
self
):
def
create_block
(
self
):
new_block_idx
=
len
(
self
.
blocks
)
new_block_idx
=
len
(
self
.
blocks
)
self
.
proto
.
append_block
(
self
.
current_block
().
proto
)
self
.
desc
.
append_block
(
self
.
current_block
().
desc
)
self
.
current_block_idx
=
new_block_idx
self
.
current_block_idx
=
new_block_idx
self
.
blocks
.
append
(
Block
(
self
,
self
.
current_block_idx
))
self
.
blocks
.
append
(
Block
(
self
,
self
.
current_block_idx
))
return
self
.
current_block
()
return
self
.
current_block
()
...
@@ -125,5 +200,41 @@ class Program(object):
...
@@ -125,5 +200,41 @@ class Program(object):
self
.
current_block_idx
=
self
.
current_block
().
parent_idx
self
.
current_block_idx
=
self
.
current_block
().
parent_idx
class
Parameter
(
Variable
):
def
__init__
(
self
,
block
,
shape
,
dtype
,
**
kwargs
):
if
shape
is
None
or
dtype
is
None
:
raise
ValueError
(
"Parameter must set shape and dtype"
)
if
len
(
shape
)
==
0
:
raise
ValueError
(
"Parameter shape cannot be empty"
)
for
each
in
shape
:
if
each
<
0
:
raise
ValueError
(
"Parameter shape should not be related with "
"batch-size"
)
Variable
.
__init__
(
self
,
block
,
shape
=
shape
,
dtype
=
dtype
,
**
kwargs
)
self
.
trainable
=
kwargs
.
get
(
'trainable'
,
True
)
self
.
init_attr
=
kwargs
.
get
(
'initialize_attr'
,
{
'type'
:
'uniform_random'
,
'min'
:
-
1.0
,
'max'
:
1.0
})
self
.
optimize_attr
=
kwargs
.
get
(
'optimize_attr'
,
{
'learning_rate'
:
1.0
})
self
.
_append_initialize_ops_
()
def
_append_initialize_ops_
(
self
):
attr
=
copy
.
deepcopy
(
self
.
init_attr
)
op_type
=
attr
.
pop
(
'type'
,
None
)
block
=
self
.
block
assert
isinstance
(
block
,
Block
)
shape
=
self
.
shape
attr
[
'dims'
]
=
shape
attr
[
'data_type'
]
=
int
(
self
.
data_type
)
op
=
block
.
prepend_op
(
type
=
op_type
,
inputs
=
None
,
outputs
=
{
'Out'
:
[
self
]},
attrs
=
attr
)
self
.
op
=
op
# program is a global instance.
# program is a global instance.
g_program
=
Program
.
instance
()
g_program
=
Program
.
instance
()
python/paddle/v2/framework/tests/test_parameter.py
0 → 100644
浏览文件 @
ee22a436
import
unittest
from
paddle.v2.framework.graph
import
g_program
import
paddle.v2.framework.core
as
core
class
TestParameter
(
unittest
.
TestCase
):
def
test_param
(
self
):
b
=
g_program
.
create_block
()
param
=
b
.
create_parameter
(
name
=
'fc.w'
,
shape
=
[
784
,
100
],
dtype
=
'float32'
,
initialize_attr
=
{
'type'
:
'uniform_random'
,
'seed'
:
13
,
'min'
:
-
5.0
,
'max'
:
5.0
})
self
.
assertIsNotNone
(
param
)
self
.
assertEqual
(
'fc.w'
,
param
.
name
)
self
.
assertEqual
((
784
,
100
),
param
.
shape
)
self
.
assertEqual
(
core
.
DataType
.
FP32
,
param
.
data_type
)
self
.
assertEqual
(
0
,
param
.
block
.
idx
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_variable.py
0 → 100644
浏览文件 @
ee22a436
import
unittest
from
paddle.v2.framework.graph
import
Variable
,
g_program
import
paddle.v2.framework.core
as
core
import
numpy
as
np
class
TestVariable
(
unittest
.
TestCase
):
def
test_np_dtype_convert
(
self
):
DT
=
core
.
DataType
convert
=
Variable
.
_convert_np_dtype_to_dtype_
self
.
assertEqual
(
DT
.
FP32
,
convert
(
np
.
float32
))
self
.
assertEqual
(
DT
.
FP16
,
convert
(
"float16"
))
self
.
assertEqual
(
DT
.
FP64
,
convert
(
"float64"
))
self
.
assertEqual
(
DT
.
INT32
,
convert
(
"int32"
))
self
.
assertEqual
(
DT
.
INT16
,
convert
(
"int16"
))
self
.
assertEqual
(
DT
.
INT64
,
convert
(
"int64"
))
self
.
assertEqual
(
DT
.
BOOL
,
convert
(
"bool"
))
self
.
assertRaises
(
ValueError
,
lambda
:
convert
(
"int8"
))
def
test_var
(
self
):
b
=
g_program
.
current_block
()
w
=
b
.
create_var
(
dtype
=
"float64"
,
shape
=
[
784
,
100
],
lod_level
=
0
,
name
=
"fc.w"
)
self
.
assertEqual
(
core
.
DataType
.
FP64
,
w
.
data_type
)
self
.
assertEqual
((
784
,
100
),
w
.
shape
)
self
.
assertEqual
(
"fc.w"
,
w
.
name
)
self
.
assertEqual
(
0
,
w
.
lod_level
)
w
=
b
.
create_var
(
name
=
'fc.w'
)
self
.
assertEqual
(
core
.
DataType
.
FP64
,
w
.
data_type
)
self
.
assertEqual
((
784
,
100
),
w
.
shape
)
self
.
assertEqual
(
"fc.w"
,
w
.
name
)
self
.
assertEqual
(
0
,
w
.
lod_level
)
self
.
assertRaises
(
ValueError
,
lambda
:
b
.
create_var
(
name
=
"fc.w"
,
shape
=
(
24
,
100
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录