未验证 提交 ed2641cb 编写于 作者: A andyjpaddle 提交者: GitHub

[NPU] Support op kernel for Fill constant batch size like op (#34721)

* fix npu compile error, test=develop

* add fill constant batch size lilke op npu,test=develop
Co-authored-by: Nqili93 <qili93@qq.com>
上级 cfd49acc
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/utils.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class FillConstantBatchSizeLikeOpNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto data_type =
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
auto float_value = ctx.Attr<float>("value");
auto str_value = ctx.Attr<std::string>("str_value");
auto force_cpu = ctx.Attr<bool>("force_cpu");
auto *out = ctx.Output<Tensor>("Out");
auto *input = ctx.Input<Tensor>("Input");
if (&ctx.Attr<int>("input_dim_idx") == 0) {
// set the correct batch size.
auto odims = out->dims();
int input_dim_idx = ctx.Attr<int>("input_dim_idx");
int output_dim_idx = ctx.Attr<int>("output_dim_idx");
odims[output_dim_idx] = input->dims()[input_dim_idx];
out->mutable_data<T>(odims, ctx.GetPlace());
}
T value;
if (str_value.empty()) {
value = static_cast<T>(float_value);
} else {
std::stringstream convert_stream(str_value);
if (std::is_same<int64_t, T>::value) {
int64_t tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
} else {
double tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
}
}
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(ctx.GetPlace());
bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
if (cpu_place) {
math::SetConstant<platform::CPUDeviceContext, T> functor;
out->mutable_data(platform::CPUPlace(), data_type);
functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
out, static_cast<T>(value));
} else {
out->mutable_data(ctx.GetPlace(), data_type);
Tensor tensor_tmp(data_type);
tensor_tmp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&tensor_tmp, value);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto &runner =
NpuOpRunner("FillD", {tensor_tmp}, {*out},
{{"dims", framework::vectorize(out->dims())}});
runner.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
fill_constant_batch_size_like,
ops::FillConstantBatchSizeLikeOpNPUKernel<
paddle::platform::NPUDeviceContext, float>,
ops::FillConstantBatchSizeLikeOpNPUKernel<
paddle::platform::NPUDeviceContext, int>,
ops::FillConstantBatchSizeLikeOpNPUKernel<
paddle::platform::NPUDeviceContext, paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
paddle.enable_static()
SEED = 2021
class TestFillConstantBatchSizeLike(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "fill_constant_batch_size_like"
self.init_shape()
self.init_value()
self.init_dtype()
self.init_force_cpu()
self.init_dim_idx()
self.inputs = {
'Input': np.random.random(self.input_shape).astype("float32")
}
self.attrs = {
'shape': self.shape,
'value': self.value,
'str_value': self.str_value,
'dtype': self.dtype,
'force_cpu': self.force_cpu,
'input_dim_idx': self.input_dim_idx,
'output_dim_idx': self.output_dim_idx
}
self.outputs = {
'Out': np.full(self.output_shape, self.output_value,
self.output_dtype)
}
def set_npu(self):
self.__class__.use_npu = True
def init_shape(self):
self.input_shape = [4, 5]
self.shape = [123, 92]
self.output_shape = (4, 92)
def init_value(self):
self.value = 3.8
self.str_value = ''
self.output_value = 3.8
def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP32
self.output_dtype = np.float32
def init_force_cpu(self):
self.force_cpu = False
def init_dim_idx(self):
self.input_dim_idx = 0
self.output_dim_idx = 0
def test_check_output(self):
self.check_output_with_place(self.place)
class TestFillConstantBatchSizeLike2(TestFillConstantBatchSizeLike):
def init_shape(self):
# test shape
self.input_shape = [4, 5, 6, 7]
self.shape = [10, 123, 92]
self.output_shape = (4, 123, 92)
class TestFillConstantBatchSizeLike3(TestFillConstantBatchSizeLike):
def init_value(self):
# use 'str_value' rather than 'value'
self.value = 3.8
self.str_value = '4.5'
self.output_value = 4.5
class TestFillConstantBatchSizeLike6(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP16
self.output_dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-2)
class TestFillConstantBatchSizeLike7(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.INT32
self.output_dtype = np.int32
class TestFillConstantBatchSizeLike8(TestFillConstantBatchSizeLike):
def init_force_cpu(self):
self.force_cpu = True
class TestFillConstantBatchSizeLike9(TestFillConstantBatchSizeLike):
def init_shape(self):
self.input_shape = [4, 5]
self.shape = [123, 92]
self.output_shape = (123, 4)
def init_dim_idx(self):
self.input_dim_idx = 0
self.output_dim_idx = 1
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册