提交 ed0a564c 编写于 作者: H hedaoyuan

Optimize GemmConvMobileFunction.

上级 2b202f75
...@@ -178,19 +178,22 @@ public: ...@@ -178,19 +178,22 @@ public:
real* inputData = inputs[0].data<real>(); real* inputData = inputs[0].data<real>();
real* filterData = inputs[1].data<real>(); real* filterData = inputs[1].data<real>();
real* outputData = outputs[0].data<real>(); real* outputData = outputs[0].data<real>();
real* colData = NULL;
bool needIm2col = isNeedIm2col(filter); bool needIm2col = isNeedIm2col(filter);
TensorShape imShape = TensorShape imShape =
TensorShape({inputChannels / groups_, inputHeight, inputWidth}); TensorShape({inputChannels / groups_, inputHeight, inputWidth});
TensorShape colShape; TensorShape colShape;
real* colData = NULL;
size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth; // Max col matrix width 4096, Max col matrix size 4M.
size_t colWidth = outputHeight * outputWidth; size_t outputHeightSteps =
// Max col matrix height 256, Max col matrix width 1024 std::min(std::max(4096 / outputWidth, (size_t)1), outputHeight);
size_t stepColHeight = std::min(colHeight, static_cast<size_t>(256)); size_t maxColWidth = outputHeightSteps * outputWidth;
size_t stepColWidth = std::min(colWidth, static_cast<size_t>(2048)); size_t channelSteps =
std::min(std::max((1048576 / maxColWidth) / filterHeight * filterWidth,
(size_t)1),
inputChannels / groups_);
size_t maxColHeight = channelSteps * filterHeight * filterWidth;
if (needIm2col) { if (needIm2col) {
colShape = TensorShape({inputChannels / groups_, colShape = TensorShape({inputChannels / groups_,
...@@ -199,7 +202,7 @@ public: ...@@ -199,7 +202,7 @@ public:
outputHeight, outputHeight,
outputWidth}); outputWidth});
resizeBuffer<Device>(stepColHeight * stepColWidth * sizeof(real)); resizeBuffer<Device>(maxColHeight * maxColWidth * sizeof(real));
colData = reinterpret_cast<real*>(memory_->getBuf()); colData = reinterpret_cast<real*>(memory_->getBuf());
} }
...@@ -209,20 +212,24 @@ public: ...@@ -209,20 +212,24 @@ public:
(outputChannels / groups_) * outputHeight * outputWidth; (outputChannels / groups_) * outputHeight * outputWidth;
size_t filterOffset = filter.getElements() / groups_; size_t filterOffset = filter.getElements() / groups_;
int nStride = colWidth; int nStride = outputHeight * outputWidth;
int kStride = colHeight; int kStride = inputChannels / groups_ * filterHeight * filterWidth;
for (size_t i = 0; i < batchSize; i++) { for (size_t i = 0; i < batchSize; i++) {
filterData = inputs[1].data<real>();
for (size_t g = 0; g < groups_; g++) { for (size_t g = 0; g < groups_; g++) {
if (needIm2col) { if (needIm2col) {
real beta_ = beta; real beta_ = beta;
for (size_t colHeightStart = 0; colHeightStart < colHeight; for (size_t ic = 0; ic < inputChannels / groups_;
colHeightStart += stepColHeight) { ic += channelSteps) {
for (size_t colWidthStart = 0; colWidthStart < colWidth; int channels = std::min(inputChannels / groups_ - ic, channelSteps);
colWidthStart += stepColWidth) { for (size_t oh = 0; oh < outputHeight; oh += outputHeightSteps) {
int N = std::min(colWidth - colWidthStart, stepColWidth); int height = std::min(outputHeight - oh, outputHeightSteps);
int K = std::min(colHeight - colHeightStart, stepColHeight);
int M = outputChannels / groups_;
int N = height * outputWidth;
int K = channels * filterHeight * filterWidth;
// im2col // im2col
im2col(inputData + g * inputOffset, im2col(inputData,
imShape, imShape,
colData, colData,
colShape, colShape,
...@@ -232,13 +239,12 @@ public: ...@@ -232,13 +239,12 @@ public:
paddingW(), paddingW(),
dilationH(), dilationH(),
dilationW(), dilationW(),
colHeightStart, channels,
K, oh,
colWidthStart, height,
N); N);
// gemm // gemm
int M = outputChannels / groups_;
BlasGemm<Device, real>::compute( BlasGemm<Device, real>::compute(
false, false,
false, false,
...@@ -246,12 +252,12 @@ public: ...@@ -246,12 +252,12 @@ public:
N, N,
K, K,
1.0f, 1.0f,
filterData + g * filterOffset + colHeightStart, filterData + ic * filterHeight * filterWidth,
kStride, kStride,
colData, colData,
N, N,
beta_, beta_,
outputData + g * outputOffset + colWidthStart, outputData + oh * outputWidth,
nStride); nStride);
} }
beta_ = 1.0; beta_ = 1.0;
...@@ -266,17 +272,18 @@ public: ...@@ -266,17 +272,18 @@ public:
N, N,
K, K,
1.0f, 1.0f,
filterData + g * filterOffset, filterData,
K, K,
inputData + g * inputOffset, inputData,
N, N,
beta, beta,
outputData + g * outputOffset, outputData,
N); N);
} }
inputData += inputOffset;
outputData += outputOffset;
filterData += filterOffset;
} }
inputData += inputChannels * inputHeight * inputWidth;
outputData += outputChannels * outputHeight * outputWidth;
} }
memory_.reset(); memory_.reset();
......
...@@ -98,6 +98,7 @@ public: ...@@ -98,6 +98,7 @@ public:
int dilationWidth = 1); int dilationWidth = 1);
}; };
#if 0
template <class T> template <class T>
class Im2ColMobileFunctor { class Im2ColMobileFunctor {
public: public:
...@@ -147,5 +148,57 @@ public: ...@@ -147,5 +148,57 @@ public:
} }
} }
}; };
#endif
template <class T>
class Im2ColMobileFunctor {
public:
void operator()(const T* imData,
const TensorShape& imShape,
T* colData,
const TensorShape& colShape,
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth,
int dilationHeight,
int dilationWidth,
int inputChannels,
int colOffset,
int colOutputHeight,
int colWidth) {
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputWidth = colShape[4];
for (int ic = 0; ic < inputChannels; ic++) {
for (int oh = 0; oh < colOutputHeight; oh++) {
T* dstData = colData + oh * outputWidth;
for (int fh = 0; fh < filterHeight; fh++) {
for (int fw = 0; fw < filterWidth; fw++) {
int imRowIdx = (oh + colOffset) * strideHeight + fh - paddingHeight;
if (imRowIdx < 0 || imRowIdx >= inputHeight) {
memset(dstData, 0, outputWidth * sizeof(T));
} else {
for (int ow = 0; ow < outputWidth; ow++) {
int imColIdx = ow * strideWidth + fw - paddingWidth;
if (imColIdx < 0 || imColIdx >= inputWidth) {
dstData[ow] = T(0);
} else {
dstData[ow] = imData[imRowIdx * inputWidth + imColIdx];
}
}
}
dstData += colWidth;
}
}
}
colData += filterHeight * filterWidth * colWidth;
imData += inputHeight * inputWidth;
}
}
};
} // namespace paddle } // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册