未验证 提交 ec3e0a13 编写于 作者: Z zhangbopd 提交者: GitHub

add cross_op cuda kernel (#43558)

上级 abbd4abb
......@@ -61,6 +61,18 @@ class CrossGradOp : public framework::OperatorWithKernel {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
auto x_dims = ctx->GetInputsDim("X");
auto y_dims = ctx->GetInputsDim("Y");
for (size_t i = 0; i < x_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i], y_dims[i],
phi::errors::InvalidArgument(
"The 'shape' of Input(X) should be equal to "
"the 'shape' of Input(Y). But received "
"Input(X).dimensions = [%s], "
"Input(Y).dimensions = [%s]",
x_dims[i], y_dims[i]));
}
}
protected:
......
......@@ -14,10 +14,105 @@
#include "paddle/phi/kernels/cross_grad_kernel.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/cross_grad_kernel_impl.h"
namespace phi {
template <typename T, typename Context>
void CrossGradKernel(const Context &dev_ctx,
const DenseTensor &x,
const DenseTensor &y,
const DenseTensor &out_grad,
int axis,
DenseTensor *x_grad,
DenseTensor *y_grad) {
auto &input_x = x;
auto &input_y = y;
auto &input_out_grad = out_grad;
auto *output_x_grad = x_grad;
auto *output_y_grad = y_grad;
int dim = axis;
auto input_x_dims = input_x.dims();
if (dim != DDim::kMaxRank) {
PADDLE_ENFORCE_EQ(
dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
true,
errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_x_dims.size(),
input_x_dims.size() - 1,
dim));
if (dim < 0) {
dim += input_x_dims.size();
}
PADDLE_ENFORCE_EQ(
input_x_dims[dim] == 3,
true,
errors::InvalidArgument(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d].",
input_x_dims[dim]));
} else {
for (auto i = 0; i < input_x_dims.size(); i++) {
if (input_x_dims[i] == 3) {
dim = i;
break;
}
}
PADDLE_ENFORCE_EQ(
dim == DDim::kMaxRank,
false,
errors::InvalidArgument("There must be at least one dimension 'd' "
"so that Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s].",
input_x_dims));
}
auto outer_loops = 1;
for (auto i = 0; i < dim; i++) {
outer_loops *= input_x_dims[i];
}
auto slice_size = 1;
for (auto i = dim + 1; i < input_x_dims.size(); i++) {
slice_size *= input_x_dims[i];
}
std::vector<T> input_x_vec, input_y_vec, input_dout_vec;
paddle::framework::TensorToVector(input_x, dev_ctx, &input_x_vec);
paddle::framework::TensorToVector(input_y, dev_ctx, &input_y_vec);
paddle::framework::TensorToVector(input_out_grad, dev_ctx, &input_dout_vec);
std::vector<T> out_dx_vec(output_x_grad->numel());
std::vector<T> out_dy_vec(output_y_grad->numel());
dev_ctx.template Alloc<T>(output_x_grad);
dev_ctx.template Alloc<T>(output_y_grad);
for (auto i = 0; i < outer_loops; i++) {
for (auto j = 0; j < 3; j++) {
auto dst_pos = (3 * i + j) * slice_size;
auto in_pos1 = (3 * i + ((j + 1) % 3)) * slice_size;
auto in_pos2 = (3 * i + ((j + 2) % 3)) * slice_size;
for (auto k = 0; k < slice_size; k++) {
out_dx_vec[dst_pos + k] =
input_dout_vec[in_pos2 + k] * input_y_vec[in_pos1 + k] -
input_dout_vec[in_pos1 + k] * input_y_vec[in_pos2 + k];
out_dy_vec[dst_pos + k] =
input_dout_vec[in_pos1 + k] * input_x_vec[in_pos2 + k] -
input_dout_vec[in_pos2 + k] * input_x_vec[in_pos1 + k];
}
}
}
paddle::framework::TensorFromVector(out_dx_vec, dev_ctx, output_x_grad);
paddle::framework::TensorFromVector(out_dy_vec, dev_ctx, output_y_grad);
output_x_grad->Resize(input_x_dims);
output_y_grad->Resize(input_x_dims);
}
} // namespace phi
PD_REGISTER_KERNEL(cross_grad,
CPU,
ALL_LAYOUT,
......
......@@ -14,9 +14,97 @@
#include "paddle/phi/kernels/cross_kernel.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/cross_kernel_impl.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
namespace phi {
template <typename T, typename Context>
void CrossKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
auto& input_x = x;
auto& input_y = y;
auto* output = out;
int dim = axis;
auto input_x_dims = input_x.dims();
if (dim != DDim::kMaxRank) {
PADDLE_ENFORCE_EQ(
dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
true,
phi::errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_x_dims.size(),
input_x_dims.size() - 1,
dim));
if (dim < 0) {
dim += input_x_dims.size();
}
PADDLE_ENFORCE_EQ(
input_x_dims[dim] == 3,
true,
phi::errors::InvalidArgument(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d].",
input_x_dims[dim]));
} else {
for (auto i = 0; i < input_x_dims.size(); i++) {
if (input_x_dims[i] == 3) {
dim = i;
break;
}
}
PADDLE_ENFORCE_EQ(dim == DDim::kMaxRank,
false,
phi::errors::InvalidArgument(
"There must be at least one dimension 'd' so that "
"Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s].",
input_x_dims));
}
auto outer_loops = 1;
for (auto i = 0; i < dim; i++) {
outer_loops *= input_x_dims[i];
}
auto slice_size = 1;
for (auto i = dim + 1; i < input_x_dims.size(); i++) {
slice_size *= input_x_dims[i];
}
std::vector<T> input_x_vec, input_y_vec;
paddle::framework::TensorToVector(input_x, dev_ctx, &input_x_vec);
paddle::framework::TensorToVector(input_y, dev_ctx, &input_y_vec);
std::vector<T> out_vec(output->numel());
dev_ctx.template Alloc<T>(output);
for (auto i = 0; i < outer_loops; i++) {
for (auto j = 0; j < 3; j++) {
auto dst_pos = (3 * i + j) * slice_size;
auto in_pos1 = (3 * i + ((j + 1) % 3)) * slice_size;
auto in_pos2 = (3 * i + ((j + 2) % 3)) * slice_size;
for (auto k = 0; k < slice_size; k++) {
out_vec[dst_pos + k] =
input_x_vec[in_pos1 + k] * input_y_vec[in_pos2 + k] -
input_x_vec[in_pos2 + k] * input_y_vec[in_pos1 + k];
}
}
}
paddle::framework::TensorFromVector(out_vec, dev_ctx, output);
output->Resize(input_x_dims);
}
} // namespace phi
PD_REGISTER_KERNEL(
cross, CPU, ALL_LAYOUT, phi::CrossKernel, float, double, int, int64_t) {}
......@@ -13,9 +13,141 @@
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cross_grad_kernel.h"
#include "paddle/phi/kernels/impl/cross_grad_kernel_impl.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace phi {
using funcs::IndexCalculator;
template <typename T>
__global__ void CrossGrad(const T* x,
const T* y,
const T* out,
T* out_dx,
T* out_dy,
const int stride,
const int N,
IndexCalculator index_calculator) {
CUDA_KERNEL_LOOP(i, N) {
int offset = index_calculator(i);
auto pos0 = offset + 0 * stride;
auto pos1 = offset + 1 * stride;
auto pos2 = offset + 2 * stride;
out_dx[pos0] = out[pos2] * y[pos1] - out[pos1] * y[pos2];
out_dy[pos0] = out[pos1] * x[pos2] - out[pos2] * x[pos1];
out_dx[pos1] = out[pos0] * y[pos2] - out[pos2] * y[pos0];
out_dy[pos1] = out[pos2] * x[pos0] - out[pos0] * x[pos2];
out_dx[pos2] = out[pos1] * y[pos0] - out[pos0] * y[pos1];
out_dy[pos2] = out[pos0] * x[pos1] - out[pos1] * x[pos0];
}
}
template <typename T, typename Context>
void CrossGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
const DenseTensor& out_grad,
int axis,
DenseTensor* x_grad,
DenseTensor* y_grad) {
auto& input_x = x;
auto& input_y = y;
auto& input_out_grad = out_grad;
auto* output_x_grad = x_grad;
auto* output_y_grad = y_grad;
int dim = axis;
auto input_x_dims = input_x.dims();
if (dim != DDim::kMaxRank) {
PADDLE_ENFORCE_EQ(
dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
true,
errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_x_dims.size(),
input_x_dims.size() - 1,
dim));
if (dim < 0) {
dim += input_x_dims.size();
}
PADDLE_ENFORCE_EQ(
input_x_dims[dim] == 3,
true,
errors::InvalidArgument(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d].",
input_x_dims[dim]));
} else {
for (auto i = 0; i < input_x_dims.size(); i++) {
if (input_x_dims[i] == 3) {
dim = i;
break;
}
}
PADDLE_ENFORCE_EQ(
dim == DDim::kMaxRank,
false,
errors::InvalidArgument("There must be at least one dimension 'd' "
"so that Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s].",
input_x_dims));
}
std::vector<int> cal_dims;
std::vector<int> left_strides;
std::vector<int> full_strides;
int full_dim = 1;
int left_dim = 1;
for (auto i = 0; i < input_x_dims.size(); i++) {
full_strides.insert(full_strides.begin(), full_dim);
full_dim *= input_x_dims[input_x_dims.size() - i - 1];
if (i == dim) {
continue;
}
cal_dims.push_back(i);
left_strides.insert(left_strides.begin(), left_dim);
left_dim *= input_x_dims[input_x_dims.size() - i - 1];
}
const auto* input_x_data = input_x.data<T>();
const auto* input_y_data = input_y.data<T>();
const auto* input_out_grad_data = input_out_grad.data<T>();
auto* output_x_grad_data = dev_ctx.template Alloc<T>(x_grad);
auto* output_y_grad_data = dev_ctx.template Alloc<T>(y_grad);
auto index_calculator = IndexCalculator(
input_x_dims.size() - 1, cal_dims, left_strides, full_strides);
int64_t numel = x.numel();
backends::gpu::GpuLaunchConfig config =
backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel / 3);
CrossGrad<<<config.block_per_grid,
config.thread_per_block,
0,
dev_ctx.stream()>>>(input_x_data,
input_y_data,
input_out_grad_data,
output_x_grad_data,
output_y_grad_data,
full_strides[dim],
numel / 3,
index_calculator);
}
} // namespace phi
PD_REGISTER_KERNEL(cross_grad,
GPU,
......
......@@ -13,9 +13,126 @@
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cross_kernel.h"
#include "paddle/phi/kernels/impl/cross_kernel_impl.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace phi {
using funcs::IndexCalculator;
template <typename T>
__global__ void Cross(const T* x,
const T* y,
T* out,
const int stride,
const int N,
IndexCalculator index_calculator) {
CUDA_KERNEL_LOOP(i, N) {
int offset = index_calculator(i);
auto pos0 = offset + 0 * stride;
auto pos1 = offset + 1 * stride;
auto pos2 = offset + 2 * stride;
out[pos0] = x[pos1] * y[pos2] - x[pos2] * y[pos1];
out[pos1] = x[pos2] * y[pos0] - x[pos0] * y[pos2];
out[pos2] = x[pos0] * y[pos1] - x[pos1] * y[pos0];
}
}
template <typename T, typename Context>
void CrossKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
auto& input_x = x;
auto& input_y = y;
auto* output = out;
int dim = axis;
auto input_x_dims = input_x.dims();
if (dim != DDim::kMaxRank) {
PADDLE_ENFORCE_EQ(
dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
true,
phi::errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_x_dims.size(),
input_x_dims.size() - 1,
dim));
if (dim < 0) {
dim += input_x_dims.size();
}
PADDLE_ENFORCE_EQ(
input_x_dims[dim] == 3,
true,
phi::errors::InvalidArgument(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d].",
input_x_dims[dim]));
} else {
for (auto i = 0; i < input_x_dims.size(); i++) {
if (input_x_dims[i] == 3) {
dim = i;
break;
}
}
PADDLE_ENFORCE_EQ(dim == DDim::kMaxRank,
false,
phi::errors::InvalidArgument(
"There must be at least one dimension 'd' so that "
"Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s].",
input_x_dims));
}
std::vector<int> cal_dims;
std::vector<int> left_strides;
std::vector<int> full_strides;
int dims0 = 1;
int dims1 = 1;
for (auto i = 0; i < input_x_dims.size(); i++) {
full_strides.insert(full_strides.begin(), dims0);
dims0 *= input_x_dims[input_x_dims.size() - i - 1];
if (i == dim) {
continue;
}
cal_dims.push_back(i);
left_strides.insert(left_strides.begin(), dims1);
dims1 *= input_x_dims[input_x_dims.size() - i - 1];
}
const auto* input_x_data = input_x.data<T>();
const auto* input_y_data = input_y.data<T>();
auto* out_data = dev_ctx.template Alloc<T>(out);
auto index_calculator = IndexCalculator(
input_x_dims.size() - 1, cal_dims, left_strides, full_strides);
int64_t numel = x.numel();
backends::gpu::GpuLaunchConfig config =
backends::gpu::GetGpuLaunchConfig1D(dev_ctx, numel / 3);
Cross<<<config.block_per_grid,
config.thread_per_block,
0,
dev_ctx.stream()>>>(input_x_data,
input_y_data,
out_data,
full_strides[dim],
numel / 3,
index_calculator);
}
} // namespace phi
PD_REGISTER_KERNEL(
cross, GPU, ALL_LAYOUT, phi::CrossKernel, float, double, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void CrossGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
const DenseTensor& out_grad,
int axis,
DenseTensor* x_grad,
DenseTensor* y_grad) {
auto& input_x = x;
auto& input_y = y;
auto& input_out_grad = out_grad;
auto* output_x_grad = x_grad;
auto* output_y_grad = y_grad;
int dim = axis;
auto input_x_dims = input_x.dims();
if (dim != DDim::kMaxRank) {
PADDLE_ENFORCE_EQ(
dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
true,
errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_x_dims.size(),
input_x_dims.size() - 1,
dim));
if (dim < 0) {
dim += input_x_dims.size();
}
PADDLE_ENFORCE_EQ(
input_x_dims[dim] == 3,
true,
errors::InvalidArgument(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d].",
input_x_dims[dim]));
} else {
for (auto i = 0; i < input_x_dims.size(); i++) {
if (input_x_dims[i] == 3) {
dim = i;
break;
}
}
PADDLE_ENFORCE_EQ(
dim == DDim::kMaxRank,
false,
errors::InvalidArgument("There must be at least one dimension 'd' "
"so that Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s].",
input_x_dims));
}
auto outer_loops = 1;
for (auto i = 0; i < dim; i++) {
outer_loops *= input_x_dims[i];
}
auto slice_size = 1;
for (auto i = dim + 1; i < input_x_dims.size(); i++) {
slice_size *= input_x_dims[i];
}
std::vector<T> input_x_vec, input_y_vec, input_dout_vec;
paddle::framework::TensorToVector(input_x, dev_ctx, &input_x_vec);
paddle::framework::TensorToVector(input_y, dev_ctx, &input_y_vec);
paddle::framework::TensorToVector(input_out_grad, dev_ctx, &input_dout_vec);
std::vector<T> out_dx_vec(output_x_grad->numel());
std::vector<T> out_dy_vec(output_y_grad->numel());
dev_ctx.template Alloc<T>(output_x_grad);
dev_ctx.template Alloc<T>(output_y_grad);
for (auto i = 0; i < outer_loops; i++) {
for (auto j = 0; j < 3; j++) {
auto dst_pos = (3 * i + j) * slice_size;
auto in_pos1 = (3 * i + ((j + 1) % 3)) * slice_size;
auto in_pos2 = (3 * i + ((j + 2) % 3)) * slice_size;
for (auto k = 0; k < slice_size; k++) {
out_dx_vec[dst_pos + k] =
input_dout_vec[in_pos2 + k] * input_y_vec[in_pos1 + k] -
input_dout_vec[in_pos1 + k] * input_y_vec[in_pos2 + k];
out_dy_vec[dst_pos + k] =
input_dout_vec[in_pos1 + k] * input_x_vec[in_pos2 + k] -
input_dout_vec[in_pos2 + k] * input_x_vec[in_pos1 + k];
}
}
}
paddle::framework::TensorFromVector(out_dx_vec, dev_ctx, output_x_grad);
paddle::framework::TensorFromVector(out_dy_vec, dev_ctx, output_y_grad);
output_x_grad->Resize(input_x_dims);
output_y_grad->Resize(input_x_dims);
}
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
namespace phi {
template <typename T, typename Context>
void CrossKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& y,
int axis,
DenseTensor* out) {
auto& input_x = x;
auto& input_y = y;
auto* output = out;
int dim = axis;
auto input_x_dims = input_x.dims();
auto input_y_dims = input_y.dims();
bool dims_match = phi::funcs::CheckDims(input_x_dims, input_y_dims);
PADDLE_ENFORCE_EQ(
dims_match,
true,
phi::errors::InvalidArgument("The 'shape' of Input(X) should be equal to "
"the 'shape' of Input(Y). But received "
"Input(X).dimensions = [%s], "
"Input(Y).dimensions = [%s]",
input_x_dims,
input_x_dims));
if (dim != DDim::kMaxRank) {
PADDLE_ENFORCE_EQ(
dim < input_x_dims.size() && dim >= (0 - input_x_dims.size()),
true,
phi::errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_x_dims.size(),
input_x_dims.size() - 1,
dim));
if (dim < 0) {
dim += input_x_dims.size();
}
PADDLE_ENFORCE_EQ(
input_x_dims[dim] == 3,
true,
phi::errors::InvalidArgument(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d].",
input_x_dims[dim]));
} else {
for (auto i = 0; i < input_x_dims.size(); i++) {
if (input_x_dims[i] == 3) {
dim = i;
break;
}
}
PADDLE_ENFORCE_EQ(dim == DDim::kMaxRank,
false,
phi::errors::InvalidArgument(
"There must be at least one dimension 'd' so that "
"Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s].",
input_x_dims));
}
auto outer_loops = 1;
for (auto i = 0; i < dim; i++) {
outer_loops *= input_x_dims[i];
}
auto slice_size = 1;
for (auto i = dim + 1; i < input_x_dims.size(); i++) {
slice_size *= input_x_dims[i];
}
std::vector<T> input_x_vec, input_y_vec;
paddle::framework::TensorToVector(input_x, dev_ctx, &input_x_vec);
paddle::framework::TensorToVector(input_y, dev_ctx, &input_y_vec);
std::vector<T> out_vec(output->numel());
dev_ctx.template Alloc<T>(output);
for (auto i = 0; i < outer_loops; i++) {
for (auto j = 0; j < 3; j++) {
auto dst_pos = (3 * i + j) * slice_size;
auto in_pos1 = (3 * i + ((j + 1) % 3)) * slice_size;
auto in_pos2 = (3 * i + ((j + 2) % 3)) * slice_size;
for (auto k = 0; k < slice_size; k++) {
out_vec[dst_pos + k] =
input_x_vec[in_pos1 + k] * input_y_vec[in_pos2 + k] -
input_x_vec[in_pos2 + k] * input_y_vec[in_pos1 + k];
}
}
}
paddle::framework::TensorFromVector(out_vec, dev_ctx, output);
output->Resize(input_x_dims);
}
} // namespace phi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册