Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ec2aed2a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ec2aed2a
编写于
9月 01, 2018
作者:
X
Xin Pan
提交者:
GitHub
9月 01, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13102 from typhoonzero/merge_dist_deps_fixes
Cherrypick dist fixes
上级
2aad01fc
43926959
变更
17
展开全部
隐藏空白更改
内联
并排
Showing
17 changed file
with
2171 addition
and
391 deletion
+2171
-391
paddle/fluid/API.spec
paddle/fluid/API.spec
+6
-4
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+42
-25
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+0
-57
paddle/fluid/operators/fetch_barrier_op.cc
paddle/fluid/operators/fetch_barrier_op.cc
+2
-0
paddle/fluid/operators/send_barrier_op.cc
paddle/fluid/operators/send_barrier_op.cc
+4
-0
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+9
-2
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+19
-8
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+1649
-207
python/paddle/fluid/tests/unittests/dist_word2vec.py
python/paddle/fluid/tests/unittests/dist_word2vec.py
+10
-6
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+84
-40
python/paddle/fluid/tests/unittests/test_dist_mnist.py
python/paddle/fluid/tests/unittests/test_dist_mnist.py
+42
-1
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+11
-0
python/paddle/fluid/tests/unittests/test_dist_train.py
python/paddle/fluid/tests/unittests/test_dist_train.py
+1
-1
python/paddle/fluid/tests/unittests/test_dist_transformer.py
python/paddle/fluid/tests/unittests/test_dist_transformer.py
+45
-4
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
+12
-1
python/paddle/fluid/transpiler/details/program_utils.py
python/paddle/fluid/transpiler/details/program_utils.py
+133
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+102
-35
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ec2aed2a
...
...
@@ -55,9 +55,10 @@ paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path
paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'
], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, Tru
e))
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'
, 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, Non
e))
paddle.fluid.InferenceTranspiler.__init__
paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
...
...
@@ -329,9 +330,10 @@ paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'
], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, Tru
e))
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'
, 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, Non
e))
paddle.fluid.transpiler.InferenceTranspiler.__init__
paddle.fluid.transpiler.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
ec2aed2a
...
...
@@ -736,7 +736,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
.
emplace
(
varname
,
op_dev_id
);
}
}
else
{
PADDLE_
ENFORCE
(
PADDLE_
THROW
(
"the distribute training related op should be in [split_byref, "
"concat]."
);
}
...
...
@@ -746,17 +746,26 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
node
->
Op
()
->
Type
());
CreateComputationalOp
(
result
,
node
,
op_dev_id
);
if
(
node
->
Op
()
->
Type
()
==
"concat"
)
{
ConnectOp
(
result
,
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
().
get
(),
"fetch_barrier"
);
}
void
SetOpInputsAllPlaces
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
num_places
)
{
auto
*
op_handle
=
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
().
get
();
for
(
ir
::
Node
*
input
:
node
->
inputs
)
{
VarHandle
*
var
=
nullptr
;
for
(
int
place_offset
=
0
;
place_offset
<
num_places
;
++
place_offset
)
{
auto
&
var_holders
=
result
->
Get
<
GraphVars
>
(
kGraphVars
)[
place_offset
];
auto
&
var_holder
=
var_holders
[
input
->
Name
()];
if
(
!
var_holder
.
empty
())
{
var
=
var_holder
.
rbegin
()
->
get
();
op_handle
->
AddInput
(
var
);
}
}
}
}
// Create RPC related op handles that connects its in ops and out ops.
void
MultiDevSSAGraphBuilder
::
CreateRPCOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
// FIXME(typhoonzero): Cleanup this deps for both sync mode and async mode
// put them into transpiler.
int
op_dev_id
=
-
1
;
if
(
node
->
Op
()
->
Type
()
==
"send"
)
{
// TODO(paddle-dev): getting the first var is not safe.
...
...
@@ -791,8 +800,6 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
}
auto
recv_param_grad
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
node
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
()));
// FIXME(typhoonzero): assume each recv op output one param
// Use the same place as send.
if
(
recv_param_grad
.
size
()
==
2U
)
{
op_dev_id
=
GetVarDeviceID
(
*
result
,
recv_param_grad
[
1
]);
VLOG
(
10
)
<<
"recv param "
<<
recv_param_grad
[
0
]
...
...
@@ -806,34 +813,44 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
.
emplace
(
varname
,
op_dev_id
);
}
}
else
{
// send_barrier
and fetch_barrier op can be scheduled on device 0
// send_barrier
, fetch_barrier will run on place 0;
op_dev_id
=
0
;
}
PADDLE_ENFORCE
(
op_dev_id
!=
-
1
,
"can not find the right place for rpc op: %s"
,
node
->
Op
()
->
Type
());
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
RPCOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
*
node
->
Op
(),
local_scopes_
[
op_dev_id
],
node
->
Op
()
->
Type
(),
places_
[
op_dev_id
]));
// TODO(panyx0718): This might not be needed anymore.
if
(
node
->
Op
()
->
Type
()
==
"send_barrier"
)
{
ConnectOp
(
result
,
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
().
get
(),
"send"
);
}
else
if
(
node
->
Op
()
->
Type
()
==
"recv"
)
{
ConnectOp
(
result
,
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
().
get
(),
"send_barrier"
);
}
else
if
(
node
->
Op
()
->
Type
()
==
"fetch_barrier"
)
{
ConnectOp
(
result
,
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
().
get
(),
"recv"
);
}
else
if
(
node
->
Op
()
->
Type
()
==
"send"
)
{
// do nothing
if
(
node
->
Op
()
->
Type
()
==
"send"
)
{
CreateOpHandleIOs
(
result
,
node
,
op_dev_id
);
}
else
{
PADDLE_THROW
(
"rpc op should be in ["
"send, send_barrier. recv, fetch_barrier]"
);
}
// send_barrier, recv, fetch_barrier's inputs are deps var, get them from
// all places
auto
p
=
places_
[
op_dev_id
];
auto
*
op_handle
=
result
->
Get
<
GraphOps
>
(
kGraphOps
).
back
().
get
();
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
CreateOpHandleIOs
(
result
,
node
,
op_dev_id
);
SetOpInputsAllPlaces
(
result
,
node
,
places_
.
size
());
for
(
ir
::
Node
*
output
:
node
->
outputs
)
{
int
outvar_dev_id
=
op_dev_id
;
if
(
node
->
Op
()
->
Type
()
==
"fetch_barrier"
)
{
outvar_dev_id
=
GetVarDeviceID
(
*
result
,
output
->
Name
());
PADDLE_ENFORCE_NE
(
outvar_dev_id
,
-
1
);
}
p
=
places_
[
outvar_dev_id
];
ir
::
Node
*
new_node
=
nullptr
;
if
(
output
->
Var
())
{
new_node
=
result
->
CreateVarNode
(
output
->
Var
());
}
else
{
new_node
=
result
->
CreateEmptyNode
(
output
->
Name
(),
ir
::
Node
::
Type
::
kVariable
);
}
CreateOpOutput
(
result
,
op_handle
,
new_node
,
p
,
outvar_dev_id
);
}
}
}
bool
MultiDevSSAGraphBuilder
::
IsScaleLossOp
(
ir
::
Node
*
node
)
const
{
...
...
paddle/fluid/framework/ir/graph.cc
浏览文件 @
ec2aed2a
...
...
@@ -132,63 +132,6 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
}
}
std
::
vector
<
ir
::
Node
*>
send_ops
;
ir
::
Node
*
send_bar
=
nullptr
;
std
::
vector
<
ir
::
Node
*>
recv_ops
;
ir
::
Node
*
fetch_bar
=
nullptr
;
for
(
ir
::
Node
*
node
:
Nodes
())
{
if
(
node
->
Name
()
==
"send"
)
{
send_ops
.
push_back
(
node
);
}
else
if
(
node
->
Name
()
==
"send_barrier"
)
{
PADDLE_ENFORCE
(
!
send_bar
,
"only has one send barrier"
);
send_bar
=
node
;
}
else
if
(
node
->
Name
()
==
"recv"
)
{
recv_ops
.
push_back
(
node
);
}
else
if
(
node
->
Name
()
==
"fetch_barrier"
)
{
PADDLE_ENFORCE
(
!
fetch_bar
,
"only has one fetch barrier"
);
fetch_bar
=
node
;
}
}
if
(
send_bar
)
{
for
(
ir
::
Node
*
send
:
send_ops
)
{
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
send
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
send
);
send_bar
->
inputs
.
push_back
(
dep_var
);
dep_var
->
outputs
.
push_back
(
send_bar
);
}
for
(
ir
::
Node
*
recv
:
recv_ops
)
{
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
recv
->
inputs
.
push_back
(
dep_var
);
dep_var
->
outputs
.
push_back
(
recv
);
send_bar
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
send_bar
);
}
}
if
(
fetch_bar
)
{
for
(
ir
::
Node
*
recv
:
recv_ops
)
{
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
recv
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
recv
);
fetch_bar
->
inputs
.
push_back
(
dep_var
);
dep_var
->
outputs
.
push_back
(
fetch_bar
);
}
}
std
::
vector
<
std
::
string
>
send_vars
=
FindDistTrainSendVars
(
send_ops
);
std
::
vector
<
std
::
string
>
recv_vars
=
FindDistTrainRecvVars
(
recv_ops
);
for
(
ir
::
Node
*
node
:
Nodes
())
{
if
(
IsDistTrainOp
(
node
,
send_vars
,
recv_vars
))
{
if
(
fetch_bar
&&
node
->
Name
()
==
"concat"
)
{
ir
::
Node
*
dep_var
=
CreateControlDepVar
();
fetch_bar
->
outputs
.
push_back
(
dep_var
);
dep_var
->
inputs
.
push_back
(
fetch_bar
);
node
->
inputs
.
push_back
(
dep_var
);
dep_var
->
outputs
.
push_back
(
node
);
}
}
}
/**
* We should handle write after read(WAR) and write after write(WAW) here.
* Because some of the operators of the program can be executed parallelly.
...
...
paddle/fluid/operators/fetch_barrier_op.cc
浏览文件 @
ec2aed2a
...
...
@@ -52,6 +52,8 @@ class FetchBarrierOp : public framework::OperatorBase {
class
FetchBarrierOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddOutput
(
"Out"
,
"(Any) Dummy outputs, used for control dependency"
)
.
AsDuplicable
();
AddComment
(
R"DOC(
SendBarrier operator
...
...
paddle/fluid/operators/send_barrier_op.cc
浏览文件 @
ec2aed2a
...
...
@@ -56,6 +56,10 @@ class SendBarrierOp : public framework::OperatorBase {
class
SendBarrierOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"(Any) Dummy inputs, used for control dependency"
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(Any) Dummy outputs, used for control dependency"
)
.
AsDuplicable
();
AddComment
(
R"DOC(
SendBarrier operator
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
ec2aed2a
...
...
@@ -246,7 +246,11 @@ def Send(endpoints, send_vars, dummy_output=None, sync=True):
rpc_op_role_name
:
core
.
op_proto_and_checker_maker
.
OpRole
.
RPC
})
if
sync
:
helper
.
append_op
(
type
=
"send_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
helper
.
append_op
(
type
=
"send_barrier"
,
inputs
=
{
"X"
:
dummy_output
},
outputs
=
{
"Out"
:
[]},
attrs
=
{
"endpoints"
:
endpoints
})
def
Recv
(
endpoints
,
get_vars
,
dummy_input
=
None
,
sync
=
True
):
...
...
@@ -282,7 +286,10 @@ def Recv(endpoints, get_vars, dummy_input=None, sync=True):
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
})
if
sync
:
helper
.
append_op
(
type
=
"fetch_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
helper
.
append_op
(
type
=
"fetch_barrier"
,
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
})
return
get_vars
...
...
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
ec2aed2a
...
...
@@ -130,7 +130,12 @@ class SE_ResNeXt():
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
drop
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
act
=
'softmax'
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.05
)))
return
out
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
...
...
@@ -180,7 +185,7 @@ class SE_ResNeXt():
act
=
None
,
# avoid pserver CPU init differs from GPU
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()),
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.05
)),
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
...
...
@@ -188,13 +193,19 @@ class SE_ResNeXt():
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
//
reduction_ratio
,
act
=
'relu'
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
//
reduction_ratio
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.05
)),
act
=
'relu'
)
stdv
=
1.0
/
math
.
sqrt
(
squeeze
.
shape
[
1
]
*
1.0
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.05
)),
act
=
'sigmoid'
)
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
...
...
python/paddle/fluid/tests/unittests/dist_transformer.py
浏览文件 @
ec2aed2a
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/dist_word2vec.py
浏览文件 @
ec2aed2a
...
...
@@ -49,28 +49,32 @@ class TestDistWord2vec2x2(TestDistRunnerBase):
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
embed_second
=
fluid
.
layers
.
embedding
(
input
=
words
[
1
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
embed_third
=
fluid
.
layers
.
embedding
(
input
=
words
[
2
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
words
[
3
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
()))
name
=
'shared_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
...
...
@@ -80,13 +84,13 @@ class TestDistWord2vec2x2(TestDistRunnerBase):
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()))
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
words
[
4
])
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
ec2aed2a
...
...
@@ -21,7 +21,7 @@ import sys
import
six
import
signal
import
subprocess
import
six
import
argparse
class
TestDistRunnerBase
(
object
):
...
...
@@ -30,7 +30,7 @@ class TestDistRunnerBase(object):
"get_model should be implemented by child classes."
)
def
get_transpiler
(
self
,
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
trainers
,
sync_mode
):
# NOTE: import fluid until runtime, or else forking processes will cause error.
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -39,33 +39,35 @@ class TestDistRunnerBase(object):
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
trainers
=
trainers
,
sync_mode
=
sync_mode
)
return
t
def
run_pserver
(
self
,
pserver_endpoints
,
trainers
,
current_endpoint
,
trainer_id
):
def
run_pserver
(
self
,
args
):
import
paddle
import
paddle.fluid
as
fluid
self
.
get_model
(
batch_size
=
2
)
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
t
=
self
.
get_transpiler
(
args
.
trainer_id
,
fluid
.
default_main_program
(),
args
.
endpoints
,
args
.
trainers
,
args
.
sync_mode
)
pserver_prog
=
t
.
get_pserver_program
(
args
.
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
args
.
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
):
def
run_trainer
(
self
,
place
,
args
):
import
paddle
import
paddle.fluid
as
fluid
test_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
=
\
self
.
get_model
(
batch_size
=
2
)
if
is_dist
:
t
=
self
.
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
endpoints
,
trainers
)
if
args
.
is_dist
:
t
=
self
.
get_transpiler
(
args
.
trainer_id
,
fluid
.
default_main_program
(),
args
.
endpoints
,
args
.
trainers
,
args
.
sync_mode
)
trainer_prog
=
t
.
get_trainer_program
()
else
:
trainer_prog
=
fluid
.
default_main_program
()
...
...
@@ -76,8 +78,18 @@ class TestDistRunnerBase(object):
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
strategy
.
allow_op_delay
=
False
build_stra
=
fluid
.
BuildStrategy
()
if
args
.
use_reduce
:
build_stra
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
else
:
build_stra
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
)
True
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
,
build_strategy
=
build_stra
)
feed_var_list
=
[
var
for
var
in
trainer_prog
.
global_block
().
vars
.
values
()
...
...
@@ -106,45 +118,64 @@ def runtime_main(test_class):
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
if
len
(
sys
.
argv
)
!=
7
:
print
(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role
=
sys
.
argv
[
1
]
endpoints
=
sys
.
argv
[
2
]
trainer_id
=
int
(
sys
.
argv
[
3
])
current_endpoint
=
sys
.
argv
[
4
]
trainers
=
int
(
sys
.
argv
[
5
])
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
parser
=
argparse
.
ArgumentParser
(
description
=
'Run dist test.'
)
parser
.
add_argument
(
'--role'
,
type
=
str
,
required
=
True
,
choices
=
[
'pserver'
,
'trainer'
])
parser
.
add_argument
(
'--endpoints'
,
type
=
str
,
required
=
False
,
default
=
""
)
parser
.
add_argument
(
'--is_dist'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--trainer_id'
,
type
=
int
,
required
=
False
,
default
=
0
)
parser
.
add_argument
(
'--trainers'
,
type
=
int
,
required
=
False
,
default
=
1
)
parser
.
add_argument
(
'--current_endpoint'
,
type
=
str
,
required
=
False
,
default
=
""
)
parser
.
add_argument
(
'--sync_mode'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--mem_opt'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_reduce'
,
action
=
'store_true'
)
args
=
parser
.
parse_args
()
model
=
test_class
()
if
role
==
"pserver"
:
model
.
run_pserver
(
endpoints
,
trainers
,
current_endpoint
,
trainer_id
)
if
args
.
role
==
"pserver"
:
model
.
run_pserver
(
args
)
else
:
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
model
.
run_trainer
(
p
,
endpoints
,
trainer_id
,
trainers
,
is_dist
)
model
.
run_trainer
(
p
,
args
)
import
paddle.compat
as
cpt
class
TestDistBase
(
unittest
.
TestCase
):
def
_setup_config
(
self
):
raise
NotImplementedError
(
"tests should have _setup_config implemented"
)
def
setUp
(
self
):
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_python_interp
=
"python"
self
.
_sync_mode
=
True
self
.
_mem_opt
=
False
self
.
_use_reduce
=
False
self
.
_setup_config
()
def
start_pserver
(
self
,
model_file
,
check_error_log
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
ps_cmd
=
"%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --is_dist"
ps0_cmd
=
ps_cmd
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
ps1_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
ps1_cmd
=
ps_cmd
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
if
self
.
_sync_mode
:
ps0_cmd
+=
" --sync_mode"
ps1_cmd
+=
" --sync_mode"
if
self
.
_mem_opt
:
ps0_cmd
+=
" --mem_opt"
ps1_cmd
+=
" --mem_opt"
ps0_pipe
=
subprocess
.
PIPE
ps1_pipe
=
subprocess
.
PIPE
if
check_error_log
:
...
...
@@ -195,9 +226,7 @@ class TestDistBase(unittest.TestCase):
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
.
update
(
required_envs
)
local_cmd
=
"%s %s trainer %s 0 %s %d FLASE"
%
\
(
self
.
_python_interp
,
model_file
,
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
)
local_cmd
=
"%s %s --role trainer"
%
(
self
.
_python_interp
,
model_file
)
if
not
check_error_log
:
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
...
...
@@ -226,12 +255,23 @@ class TestDistBase(unittest.TestCase):
self
.
_wait_ps_ready
(
ps1
.
pid
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
tr0_cmd
=
"%s %s trainer %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
tr1_cmd
=
"%s %s trainer %s 1 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
tr_cmd
=
"%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --is_dist"
tr0_cmd
=
tr_cmd
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
0
,
ps0_ep
,
self
.
_trainers
)
tr1_cmd
=
tr_cmd
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
1
,
ps1_ep
,
self
.
_trainers
)
if
self
.
_sync_mode
:
tr0_cmd
+=
" --sync_mode"
tr1_cmd
+=
" --sync_mode"
if
self
.
_mem_opt
:
tr0_cmd
+=
" --mem_opt"
tr1_cmd
+=
" --mem_opt"
if
self
.
_use_reduce
:
tr0_cmd
+=
" --use_reduce"
tr1_cmd
+=
" --use_reduce"
env0
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env1
=
{
"CUDA_VISIBLE_DEVICES"
:
"1"
}
...
...
@@ -282,6 +322,10 @@ class TestDistBase(unittest.TestCase):
# FIXME: use terminate() instead of sigkill.
os
.
kill
(
ps0
.
pid
,
signal
.
SIGKILL
)
os
.
kill
(
ps1
.
pid
,
signal
.
SIGKILL
)
ps0
.
terminate
()
ps1
.
terminate
()
ps0
.
wait
()
ps1
.
wait
()
FNULL
.
close
()
self
.
assertAlmostEqual
(
local_first_loss
,
dist_first_loss
,
delta
=
delta
)
...
...
python/paddle/fluid/tests/unittests/test_dist_mnist.py
浏览文件 @
ec2aed2a
...
...
@@ -17,10 +17,51 @@ import unittest
from
test_dist_base
import
TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
class
TestDistMnist2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
class
TestDistMnist2x2WithMemopt
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_mem_opt
=
True
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
1e-7
)
class
TestDistMnistAsync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_use_reduce
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_mnist.py"
,
delta
=
200
)
# FIXME(typhoonzero): enable these tests once we have 4
# 4 GPUs on CI machine, and the base class should be updated.
#
# class TestDistMnist2x2ReduceMode(TestDistBase):
# def _setup_config(self):
# self._sync_mode = True
# self._use_reduce = True
# def test_se_resnext(self):
# self.check_with_place("dist_mnist.py", delta=1e-7)
# class TestDistMnistAsyncReduceMode(TestDistBase):
# def _setup_config(self):
# self._sync_mode = False
# self._use_reduce = True
# def test_se_resnext(self):
# self.check_with_place("dist_mnist.py", delta=200)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
ec2aed2a
...
...
@@ -18,9 +18,20 @@ from test_dist_base import TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1e-7
)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
100
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_train.py
浏览文件 @
ec2aed2a
...
...
@@ -100,7 +100,7 @@ class TestSendOp(unittest.TestCase):
main
.
global_block
().
append_op
(
type
=
"fetch_barrier"
,
inputs
=
{},
outputs
=
{},
outputs
=
{
"Out"
:
[]
},
attrs
=
{
"endpoints"
:
[
"127.0.0.1:{0}"
.
format
(
port
)],
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
...
...
python/paddle/fluid/tests/unittests/test_dist_transformer.py
浏览文件 @
ec2aed2a
...
...
@@ -15,14 +15,55 @@
from
__future__
import
print_function
import
unittest
import
paddle
from
test_dist_base
import
TestDistBase
class
TestDistTransformer2x2
(
TestDistBase
):
def
download_files
():
url_prefix
=
'http://paddle-unittest-data.cdn.bcebos.com/dist_transformer/'
vocab_url
=
url_prefix
+
'vocab.bpe.32000'
vocab_md5
=
'a86d345ca6e27f6591d0dccb1b9be853'
paddle
.
dataset
.
common
.
download
(
vocab_url
,
'test_dist_transformer'
,
vocab_md5
)
local_train_url
=
url_prefix
+
'train.tok.clean.bpe.32000.en-de'
local_train_md5
=
'033eb02b9449e6dd823f050782ac8914'
paddle
.
dataset
.
common
.
download
(
local_train_url
,
'test_dist_transformer'
,
local_train_md5
)
train0_url
=
url_prefix
+
'train.tok.clean.bpe.32000.en-de.train_0'
train0_md5
=
'ddce7f602f352a0405267285379a38b1'
paddle
.
dataset
.
common
.
download
(
train0_url
,
'test_dist_transformer'
,
train0_md5
)
train1_url
=
url_prefix
+
'train.tok.clean.bpe.32000.en-de.train_1'
train1_md5
=
'8757798200180285b1a619cd7f408747'
paddle
.
dataset
.
common
.
download
(
train1_url
,
'test_dist_transformer'
,
train1_md5
)
test_url
=
url_prefix
+
'newstest2013.tok.bpe.32000.en-de'
test_md5
=
'9dd74a266dbdb25314183899f269b4a2'
paddle
.
dataset
.
common
.
download
(
test_url
,
'test_dist_transformer'
,
test_md5
)
class
TestDistTransformer2x2Sync
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_transformer
(
self
):
download_files
()
#Note: loss on test dataset of the first 5 batch are:
# 10.518872, 10.518871, 10.518868, 10.518862, 10.518855
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1e-7
)
class
TestDistTransformer2x2Async
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_transformer
(
self
):
# TODO(paddle-dev): check if the delta is OK.
# Usually start around ~8000 and converge to ~5000
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
400
)
download_files
()
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1.0
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_word2vec.py
浏览文件 @
ec2aed2a
...
...
@@ -18,8 +18,19 @@ from test_dist_base import TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1e-4
)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
test_se_resnext
(
self
):
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1
e-7
)
self
.
check_with_place
(
"dist_word2vec.py"
,
delta
=
1
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/transpiler/details/program_utils.py
浏览文件 @
ec2aed2a
...
...
@@ -39,3 +39,136 @@ def find_op_by_output_arg(block, arg_name):
if
arg_name
in
op
.
output_arg_names
:
return
index
return
-
1
def
get_indent_space
(
indent
,
space_num
=
4
):
ret
=
""
for
i
in
range
(
0
,
indent
*
space_num
):
ret
+=
" "
return
ret
def
variable_to_code
(
var
):
"""
Get readable codes of fluid variable.
Args:
var: A fluid operator.
Returns:
string: The formatted string.
"""
if
var
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
or
var
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
:
var_str
=
"{name} : fluid.{type}.shape{shape}.astype({dtype})"
.
\
format
(
i
=
"{"
,
e
=
"}"
,
name
=
var
.
name
,
type
=
var
.
type
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
)
else
:
var_str
=
"{name} : fluid.{type})"
.
\
format
(
i
=
"{"
,
e
=
"}"
,
name
=
var
.
name
,
type
=
var
.
type
)
if
type
(
var
)
==
paddle
.
fluid
.
framework
.
Parameter
:
if
var
.
trainable
:
var_str
=
"trainable parameter "
+
var_str
else
:
var_str
=
"parameter "
+
var_str
else
:
var_str
=
"var "
+
var_str
if
var
.
persistable
:
var_str
=
"persist "
+
var_str
return
var_str
def
op_to_code
(
op
):
"""
Get readable codes of fluid operator.
Args:
op: A fluid operator.
Returns:
string: The foramtted string.
"""
outputs_str
=
"{"
for
i
in
range
(
0
,
len
(
op
.
output_names
)):
outputs_str
+=
"{name}="
.
format
(
name
=
op
.
output_names
[
i
])
o
=
op
.
output
(
op
.
output_names
[
i
])
outputs_str
+=
"{value}"
.
format
(
value
=
o
)
if
i
!=
len
(
op
.
output_names
)
-
1
:
outputs_str
+=
", "
outputs_str
+=
"}"
inputs_str
=
"{"
for
i
in
range
(
0
,
len
(
op
.
input_names
)):
inputs_str
+=
"{name}="
.
format
(
name
=
op
.
input_names
[
i
])
o
=
op
.
input
(
op
.
input_names
[
i
])
inputs_str
+=
"{value}"
.
format
(
value
=
o
)
if
i
!=
len
(
op
.
input_names
)
-
1
:
inputs_str
+=
", "
inputs_str
+=
"}"
attrs_str
=
""
for
i
in
range
(
0
,
len
(
op
.
attr_names
)):
name
=
op
.
attr_names
[
i
]
attr_type
=
op
.
desc
.
attr_type
(
name
)
if
attr_type
==
core
.
AttrType
.
BLOCK
:
a
=
"{name} = block[{value}]"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
block_attr_id
(
name
))
attrs_str
+=
a
continue
if
attr_type
==
core
.
AttrType
.
BLOCKS
:
a
=
"{name} = blocks{value}"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
blocks_attr_ids
(
name
))
attrs_str
+=
a
continue
a
=
"{name} = {value}"
.
format
(
name
=
name
,
type
=
attr_type
,
value
=
op
.
desc
.
attr
(
name
))
attrs_str
+=
a
if
i
!=
len
(
op
.
attr_names
)
-
1
:
attrs_str
+=
", "
if
outputs_str
!=
"{}"
:
op_str
=
"{outputs} = {op_type}(inputs={inputs}, {attrs})"
.
\
format
(
outputs
=
outputs_str
,
op_type
=
op
.
type
,
inputs
=
inputs_str
,
attrs
=
attrs_str
)
else
:
op_str
=
"{op_type}(inputs={inputs}, {attrs})"
.
\
format
(
op_type
=
op
.
type
,
inputs
=
inputs_str
,
attrs
=
attrs_str
)
return
op_str
def
block_to_code
(
block
,
block_idx
):
indent
=
0
print
(
"{0}{1} // block {2}"
.
format
(
get_indent_space
(
indent
),
'{'
,
block_idx
))
indent
+=
1
# sort all vars
all_vars
=
sorted
(
block
.
vars
.
iteritems
(),
key
=
lambda
x
:
x
[
0
])
for
var
in
all_vars
:
print
(
"{}{}"
.
format
(
get_indent_space
(
indent
),
variable_to_code
(
var
[
1
])))
if
len
(
all_vars
)
>
0
:
print
(
""
)
for
op
in
block
.
ops
:
print
(
"{}{}"
.
format
(
get_indent_space
(
indent
),
op_to_code
(
op
)))
indent
-=
1
print
(
"{0}{1}"
.
format
(
get_indent_space
(
indent
),
'}'
))
def
program_to_code
(
prog
):
"""
Print readable codes of fluid program.
Args:
prog : A fluid program.
An example result like bellow:
https://github.com/PaddlePaddle/Paddle/pull/12673
"""
block_idx
=
0
for
block
in
prog
.
blocks
:
block_to_code
(
block
,
block_idx
)
block_idx
+=
1
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
ec2aed2a
...
...
@@ -31,9 +31,10 @@ Steps to transpile pserver:
"""
import
math
import
random
import
sys
import
numpy
as
np
import
collections
import
random
from
.ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
..
import
core
,
framework
...
...
@@ -181,7 +182,8 @@ class DistributeTranspiler(object):
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
sync_mode
=
True
):
sync_mode
=
True
,
startup_program
=
None
):
"""
Run the transpiler.
...
...
@@ -194,13 +196,17 @@ class DistributeTranspiler(object):
list.
trainers (int): number of trainers in the distributed job.
sync_mode (bool): Do sync training or not, default is True.
startup_program (Program|None): startup_program to transpile,
default is fluid.default_main_program().
"""
if
program
is
None
:
program
=
default_main_program
()
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
self
.
origin_program
=
program
self
.
origin_startup_program
=
default_startup_program
().
clone
()
self
.
startup_program
=
startup_program
self
.
origin_startup_program
=
self
.
startup_program
.
clone
()
self
.
startup_program
=
default_startup_program
()
self
.
trainer_num
=
trainers
self
.
sync_mode
=
sync_mode
self
.
trainer_id
=
trainer_id
...
...
@@ -260,6 +266,10 @@ class DistributeTranspiler(object):
name
=
framework
.
generate_control_dev_var_name
())
grad_name_to_send_dummy_out
[
grad_varname
]
=
dummy_output
# get send op_role_var, if not splited, the grad should have .trainer suffix
# if splited, grad should be the original grad var name (split_by_ref and send
# will be on the same place). ParallelExecutor
# will use op_role_var to get expected device place to run this op.
program
.
global_block
().
_insert_op
(
index
=
index
+
1
,
type
=
"send"
,
...
...
@@ -268,18 +278,23 @@ class DistributeTranspiler(object):
attrs
=
{
"epmap"
:
eplist
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
,
OP_ROLE_VAR_ATTR_NAME
:
[
self
.
grad_name_to_param_name
[
grad_varname
],
grad_varname
],
OP_ROLE_VAR_ATTR_NAME
:
[
self
.
grad_name_to_param_name
[
grad_varname
],
splited_grad_varname
],
"sync_mode"
:
not
self
.
sync_mode
,
})
for
_
,
var
in
enumerate
(
splited_vars
):
send_vars
.
append
(
var
)
if
self
.
sync_mode
:
send_barrier_out
=
program
.
global_block
().
create_var
(
name
=
framework
.
generate_control_dev_var_name
())
input_deps
=
grad_name_to_send_dummy_out
.
values
()
program
.
global_block
().
append_op
(
type
=
"send_barrier"
,
inputs
=
{},
outputs
=
{},
inputs
=
{
"X"
:
input_deps
},
outputs
=
{
"Out"
:
send_barrier_out
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
...
...
@@ -297,32 +312,46 @@ class DistributeTranspiler(object):
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
send_vars
[
i
])
# step4: Concat the parameters splits together after recv.
all_recv_outputs
=
[]
for
param_varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
eps
=
[]
for
var
in
splited_var
:
index
=
[
v
.
name
for
v
in
recv_vars
].
index
(
var
.
name
)
eps
.
append
(
eplist
[
index
])
grad_send_dummy_out
=
grad_name_to_send_dummy_out
[
self
.
param_name_to_grad_name
[
param_varname
]]
if
self
.
sync_mode
:
recv_dep_in
=
send_barrier_out
else
:
# connect deps to send op in async mode
recv_dep_in
=
grad_name_to_send_dummy_out
[
self
.
param_name_to_grad_name
[
param_varname
]]
all_recv_outputs
.
extend
(
splited_var
)
# get recv op_role_var, if not splited, the grad should have .trainer suffix
# if splited, grad should be the original grad var name. ParallelExecutor
# will use op_role_var to get expected device place to run this op.
orig_grad_name
=
self
.
param_name_to_grad_name
[
param_varname
]
recv_op_role_var_name
=
orig_grad_name
splited_trainer_grad
=
self
.
grad_var_mapping
[
orig_grad_name
]
if
len
(
splited_trainer_grad
)
==
1
:
recv_op_role_var_name
=
splited_trainer_grad
[
0
].
name
program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"X"
:
[
grad_send_dummy_out
]},
inputs
=
{
"X"
:
[
recv_dep_in
]},
outputs
=
{
"Out"
:
splited_var
},
attrs
=
{
"epmap"
:
eps
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
,
OP_ROLE_VAR_ATTR_NAME
:
[
param_varname
,
self
.
param_name_to_grad_name
[
param_varname
]
],
OP_ROLE_VAR_ATTR_NAME
:
[
param_varname
,
recv_op_role_var_name
],
"sync_mode"
:
not
self
.
sync_mode
})
if
self
.
sync_mode
:
# form a WAW dependency
program
.
global_block
().
append_op
(
type
=
"fetch_barrier"
,
inputs
=
{},
outputs
=
{},
outputs
=
{
"Out"
:
all_recv_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
...
...
@@ -359,21 +388,18 @@ class DistributeTranspiler(object):
return
self
.
origin_program
def
_get_trainer_startup_program
(
self
,
recv_vars
,
eplist
,
startup_program
=
None
):
def
_get_trainer_startup_program
(
self
,
recv_vars
,
eplist
):
"""
Get transpiled trainer side startup program.
Args:
startup_program(Program): Startup program.
recv_vars (list): Variable list to recv for current trainer_id
eplist (list): A list of strings indicating
Returns:
Program: trainer side startup program.
"""
if
startup_program
is
None
:
startup_program
=
self
.
startup_program
startup_program
=
self
.
startup_program
# FIXME(gongwb): delete not need ops.
# note that: some parameter is not trainable and those ops can't be deleted.
...
...
@@ -406,10 +432,12 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
fetch_barrier_out
=
startup_program
.
global_block
().
create_var
(
name
=
framework
.
generate_control_dev_var_name
())
startup_program
.
global_block
().
append_op
(
type
=
"fetch_barrier"
,
inputs
=
{},
outputs
=
{},
outputs
=
{
"Out"
:
fetch_barrier_out
},
attrs
=
{
"endpoints"
:
self
.
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
...
...
@@ -419,7 +447,18 @@ class DistributeTranspiler(object):
#add concat ops to merge splited parameters received from parameter servers.
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
startup_program
.
global_block
().
vars
[
varname
]
# NOTE: if enable memory optimization, origin vars maybe removed.
if
startup_program
.
global_block
().
vars
.
has_key
(
varname
):
orig_param
=
startup_program
.
global_block
().
vars
[
varname
]
else
:
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
varname
]
orig_param
=
startup_program
.
global_block
().
create_var
(
name
=
varname
,
persistable
=
origin_param_var
.
persistable
,
type
=
origin_param_var
.
type
,
dtype
=
origin_param_var
.
dtype
,
shape
=
origin_param_var
.
shape
)
startup_program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
splited_var
},
...
...
@@ -442,7 +481,9 @@ class DistributeTranspiler(object):
# NOTE: assume blocks of the same variable is not distributed
# on the same pserver, only change param/grad varnames for
# trainers to fetch.
sys
.
stderr
.
write
(
"get_pserver_program() is deprecated, call
\
get_pserver_programs() to get pserver main and startup
\
in a single call."
)
# step1
pserver_program
=
Program
()
pserver_program
.
random_seed
=
self
.
origin_program
.
random_seed
...
...
@@ -626,32 +667,58 @@ class DistributeTranspiler(object):
attrs
=
attrs
)
pserver_program
.
_sync_with_cpp
()
# save pserver program to generate pserver side startup relatively.
self
.
pserver_program
=
pserver_program
return
pserver_program
def
get_pserver_programs
(
self
,
endpoint
):
"""
Get pserver side main program and startup program for distributed training.
Args:
endpoint (str): current pserver endpoint.
Returns:
tuple: (main_program, startup_program), of type "Program"
"""
pserver_prog
=
self
.
get_pserver_program
(
endpoint
)
pserver_startup
=
self
.
get_startup_program
(
endpoint
)
return
pserver_prog
,
pserver_startup
def
get_startup_program
(
self
,
endpoint
,
pserver_program
,
pserver_program
=
None
,
startup_program
=
None
):
"""
**Deprecated**
Get startup program for current parameter server.
Modify operator input variables if there are variables that
were split to several blocks.
Args:
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
startup_program (Program): if pass None, will use
default_startup_program
pserver_program (Program): deprecated, call get_pserver_program first.
startup_program (Program): deprecated, should pass startup_program
when initalizing
Returns:
Program: parameter server side startup program.
"""
sys
.
stderr
.
write
(
"get_startup_program() is deprecated, call
\
get_pserver_programs() to get pserver main and startup
\
in a single call."
)
if
pserver_program
!=
None
:
sys
.
stderr
.
write
(
"passing pserver_program to get_startup_program()
\
is deprecated, you can use new API get_pserver_programs() to
\
get both pserver main program and startup program."
)
if
startup_program
!=
None
:
sys
.
stderr
.
write
(
"passing startup_program to get_startup_program()
\
is deprecated, use fluid.program_guard() or pass this argument
\
to transpile() call."
)
s_prog
=
Program
()
if
not
startup_program
:
orig_s_prog
=
default_startup_program
()
else
:
orig_s_prog
=
startup_program
orig_s_prog
=
self
.
startup_program
s_prog
.
random_seed
=
orig_s_prog
.
random_seed
params
=
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录