Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ebe3b5e7
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ebe3b5e7
编写于
7月 13, 2018
作者:
Y
Yu Yang
提交者:
GitHub
7月 13, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11853 from sneaxiy/complete_py_reader_python
Add Python Reader Op (Python side and unittests)
上级
a0530c3b
0fef2527
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
439 addition
and
18 deletion
+439
-18
paddle/fluid/framework/reader.h
paddle/fluid/framework/reader.h
+4
-4
paddle/fluid/operators/reader/blocking_queue.h
paddle/fluid/operators/reader/blocking_queue.h
+9
-0
paddle/fluid/operators/reader/create_py_reader_op.cc
paddle/fluid/operators/reader/create_py_reader_op.cc
+4
-6
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
+5
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+8
-4
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+84
-1
python/paddle/fluid/tests/unittests/test_py_reader_push_pop.py
...n/paddle/fluid/tests/unittests/test_py_reader_push_pop.py
+99
-0
python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py
...le/fluid/tests/unittests/test_py_reader_using_executor.py
+224
-0
未找到文件。
paddle/fluid/framework/reader.h
浏览文件 @
ebe3b5e7
...
@@ -29,11 +29,11 @@ enum ReaderStatus { kRunning, kStopped };
...
@@ -29,11 +29,11 @@ enum ReaderStatus { kRunning, kStopped };
class
ReaderBase
{
class
ReaderBase
{
public:
public:
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
);
v
irtual
v
oid
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
);
void
Shutdown
();
v
irtual
v
oid
Shutdown
();
void
Start
();
v
irtual
v
oid
Start
();
// Return the readers which are the end of decorating chain. Basically
// Return the readers which are the end of decorating chain. Basically
// they are readers just before read op.
// they are readers just before read op.
...
@@ -42,7 +42,7 @@ class ReaderBase {
...
@@ -42,7 +42,7 @@ class ReaderBase {
virtual
~
ReaderBase
();
virtual
~
ReaderBase
();
protected:
protected:
virtual
void
ReadNextImpl
(
std
::
vector
<
LoDTensor
>*
out
)
=
0
;
virtual
void
ReadNextImpl
(
std
::
vector
<
LoDTensor
>*
out
)
{}
virtual
void
ShutdownImpl
()
{}
virtual
void
ShutdownImpl
()
{}
...
...
paddle/fluid/operators/reader/blocking_queue.h
浏览文件 @
ebe3b5e7
...
@@ -81,6 +81,15 @@ class BlockingQueue {
...
@@ -81,6 +81,15 @@ class BlockingQueue {
}
}
}
}
void
ReOpen
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
closed_
=
false
;
std
::
deque
<
T
>
new_deque
;
queue_
.
swap
(
new_deque
);
send_cv_
.
notify_all
();
receive_cv_
.
notify_all
();
}
void
Close
()
{
void
Close
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
closed_
=
true
;
closed_
=
true
;
...
...
paddle/fluid/operators/reader/create_py_reader_op.cc
浏览文件 @
ebe3b5e7
...
@@ -27,19 +27,17 @@ class PyReader : public framework::FileReader {
...
@@ -27,19 +27,17 @@ class PyReader : public framework::FileReader {
queue_
=
queue
;
queue_
=
queue
;
}
}
void
ReadNext
Impl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
bool
success
;
bool
success
;
*
out
=
queue_
->
Pop
(
&
success
);
*
out
=
queue_
->
Pop
(
&
success
);
if
(
!
success
)
out
->
clear
();
if
(
!
success
)
out
->
clear
();
}
}
private:
void
Shutdown
()
override
{
queue_
->
Close
();
}
void
ShutdownImpl
()
override
{
/* TODO */
}
void
StartImpl
()
override
{
/* TODO */
void
Start
()
override
{
queue_
->
ReOpen
();
}
}
private:
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue_
;
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue_
;
};
};
...
...
paddle/fluid/operators/reader/lod_tensor_blocking_queue.h
浏览文件 @
ebe3b5e7
...
@@ -58,12 +58,15 @@ class LoDTensorBlockingQueue {
...
@@ -58,12 +58,15 @@ class LoDTensorBlockingQueue {
inline
size_t
Size
()
const
{
return
queue_
.
Size
();
}
inline
size_t
Size
()
const
{
return
queue_
.
Size
();
}
inline
void
Close
()
{
return
queue_
.
Close
();
}
inline
void
ReOpen
()
{
queue_
.
ReOpen
();
}
inline
void
Close
()
{
queue_
.
Close
();
}
inline
bool
IsClosed
()
const
{
return
queue_
.
IsClosed
();
}
inline
bool
IsClosed
()
const
{
return
queue_
.
IsClosed
();
}
private:
private:
void
CheckDims
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
{
void
CheckDims
(
const
std
::
vector
<
framework
::
LoDTensor
>&
lod_tensor_vec
)
const
{
PADDLE_ENFORCE
(
dims_
.
size
()
==
lod_tensor_vec
.
size
(),
PADDLE_ENFORCE
(
dims_
.
size
()
==
lod_tensor_vec
.
size
(),
"Expect input size is %d but found %s"
,
dims_
.
size
(),
"Expect input size is %d but found %s"
,
dims_
.
size
(),
lod_tensor_vec
.
size
());
lod_tensor_vec
.
size
());
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
ebe3b5e7
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <Python.h>
#include <Python.h>
#include <algorithm>
#include <algorithm>
#include <map>
#include <map>
#include <memory>
#include <mutex> // NOLINT // for call_once
#include <mutex> // NOLINT // for call_once
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_map>
...
@@ -310,7 +311,8 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -310,7 +311,8 @@ All parameter, weight, gradient are variables in Paddle.
::
paddle
::
operators
::
reader
::
LoDTensorBlockingQueue
;
::
paddle
::
operators
::
reader
::
LoDTensorBlockingQueue
;
using
LoDTensorBlockingQueueHolder
=
using
LoDTensorBlockingQueueHolder
=
::
paddle
::
operators
::
reader
::
LoDTensorBlockingQueueHolder
;
::
paddle
::
operators
::
reader
::
LoDTensorBlockingQueueHolder
;
py
::
class_
<
LoDTensorBlockingQueue
>
(
m
,
"LoDTensorBlockingQueue"
,
""
)
py
::
class_
<
LoDTensorBlockingQueue
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>>
(
m
,
"LoDTensorBlockingQueue"
,
""
)
.
def
(
"push"
,
.
def
(
"push"
,
[](
LoDTensorBlockingQueue
&
self
,
[](
LoDTensorBlockingQueue
&
self
,
const
std
::
vector
<
framework
::
LoDTensor
>
&
lod_tensor_vec
)
{
const
std
::
vector
<
framework
::
LoDTensor
>
&
lod_tensor_vec
)
{
...
@@ -325,7 +327,7 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -325,7 +327,7 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"init_lod_tensor_blocking_queue"
,
m
.
def
(
"init_lod_tensor_blocking_queue"
,
[](
Variable
&
var
,
size_t
capacity
,
[](
Variable
&
var
,
size_t
capacity
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
shapes
)
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
shapes
)
->
LoDTensorBlockingQueue
*
{
->
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
{
std
::
vector
<
DDim
>
dims
(
shapes
.
size
());
std
::
vector
<
DDim
>
dims
(
shapes
.
size
());
std
::
transform
(
shapes
.
begin
(),
shapes
.
end
(),
dims
.
begin
(),
std
::
transform
(
shapes
.
begin
(),
shapes
.
end
(),
dims
.
begin
(),
[](
const
std
::
vector
<
int64_t
>
&
shape
)
{
[](
const
std
::
vector
<
int64_t
>
&
shape
)
{
...
@@ -333,9 +335,9 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -333,9 +335,9 @@ All parameter, weight, gradient are variables in Paddle.
});
});
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
auto
*
holder
=
var
.
GetMutable
<
LoDTensorBlockingQueueHolder
>
();
holder
->
InitOnce
(
capacity
,
dims
);
holder
->
InitOnce
(
capacity
,
dims
);
return
holder
->
GetQueue
()
.
get
()
;
return
holder
->
GetQueue
();
},
},
py
::
return_value_policy
::
reference
);
py
::
return_value_policy
::
copy
);
py
::
class_
<
Scope
>
(
m
,
"Scope"
,
""
)
py
::
class_
<
Scope
>
(
m
,
"Scope"
,
""
)
.
def
(
"var"
,
.
def
(
"var"
,
...
@@ -543,6 +545,8 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -543,6 +545,8 @@ All parameter, weight, gradient are variables in Paddle.
});
});
py
::
class_
<
LoDTensorArray
>
(
m
,
"LoDTensorArray"
)
py
::
class_
<
LoDTensorArray
>
(
m
,
"LoDTensorArray"
)
.
def
(
"__init__"
,
[](
LoDTensorArray
&
instance
)
{
new
(
&
instance
)
LoDTensorArray
();
})
.
def
(
"__getitem__"
,
.
def
(
"__getitem__"
,
[](
LoDTensorArray
&
self
,
size_t
i
)
{
return
&
self
.
at
(
i
);
},
[](
LoDTensorArray
&
self
,
size_t
i
)
{
return
&
self
.
at
(
i
);
},
py
::
return_value_policy
::
reference
)
py
::
return_value_policy
::
reference
)
...
...
python/paddle/fluid/__init__.py
浏览文件 @
ebe3b5e7
...
@@ -44,7 +44,7 @@ import metrics
...
@@ -44,7 +44,7 @@ import metrics
import
transpiler
import
transpiler
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
,
Scope
from
core
import
LoDTensor
,
LoDTensorArray
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
,
Scope
from
transpiler
import
DistributeTranspiler
,
InferenceTranspiler
,
\
from
transpiler
import
DistributeTranspiler
,
InferenceTranspiler
,
\
memory_optimize
,
release_memory
memory_optimize
,
release_memory
from
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
from
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
...
@@ -72,6 +72,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \
...
@@ -72,6 +72,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \
'backward'
,
'backward'
,
'regularizer'
,
'regularizer'
,
'LoDTensor'
,
'LoDTensor'
,
'LoDTensorArray'
,
'CPUPlace'
,
'CPUPlace'
,
'CUDAPlace'
,
'CUDAPlace'
,
'CUDAPinnedPlace'
,
'CUDAPinnedPlace'
,
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
ebe3b5e7
...
@@ -24,7 +24,8 @@ from layer_function_generator import generate_layer_fn, templatedoc
...
@@ -24,7 +24,8 @@ from layer_function_generator import generate_layer_fn, templatedoc
__all__
=
[
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'Recv'
,
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'Recv'
,
'open_recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'open_recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'double_buffer'
,
'random_data_generator'
,
'Preprocessor'
,
'load'
'double_buffer'
,
'random_data_generator'
,
'py_reader'
,
'Preprocessor'
,
'load'
]
]
...
@@ -445,6 +446,88 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
...
@@ -445,6 +446,88 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return
monkey_patch_reader_methods
(
main_prog_var
)
return
monkey_patch_reader_methods
(
main_prog_var
)
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
):
"""
Create a reader and blocking queue for data feeding in Python
This layer returns a Reader Variable and a BlockingQueue.
The BlockingQueue provides `push()` method to push a `LoDTensorArray`
object into the queue in Python side. In C++ side, the Reader
Variable would invoke `pop()` method of the queue to retrieve the
feeding data. The process of feeding data in Python side and fetching
data in C++ side can run in parallel. The BlockingQueue should be closed
using `close()` method when unused.
Args:
capacity(int): The maximum capacity of the BlockingQueue.
shapes(list): List of tuples which declaring data shapes.
dtypes(list): List of strs which declaring data type.
lod_levels(list): List of ints which declaring data lod_level.
Returns:
tuple(Variable, BlockingQueue):
A Reader Variable from which we can get feeding data.
A BlockingQueue object for data feeding.
Examples:
.. code-block:: python
reader, queue = fluid.layers.py_reader(
capacity=10,
shapes=[[-1,3,224,224], [-1,1]],
dtypes=['float32', 'int64'])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.read_file(reader)
# Via the blocking queue, we can feed data using threads
def feed_data(queue, feed_images, feed_labels):
for feed_image, feed_label in zip(feed_images, feed_labels):
data = core.LoDTensorArray()
data.append(feed_image)
data.append(feed_label)
queue.push(data)
thread = threading.Thread(target=feed_data, args=(queue, feed_images, feed_labels))
thread.start()
"""
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
ranks
=
[]
for
shape
in
shapes
:
shape_concat
.
extend
(
shape
)
ranks
.
append
(
len
(
shape
))
if
lod_levels
is
None
:
lod_levels
=
[
0
]
*
len
(
shapes
)
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
unique_name
(
'create_py_reader'
))
startup_blk
.
append_op
(
type
=
'create_py_reader'
,
inputs
=
{
'blocking_queue'
:
queue_name
},
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'ranks'
:
ranks
})
startup_var
.
desc
.
set_dtypes
(
dtypes
)
startup_var
.
persistable
=
True
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
return
monkey_patch_reader_methods
(
main_prog_var
),
feed_queue
def
open_files
(
filenames
,
def
open_files
(
filenames
,
shapes
,
shapes
,
lod_levels
,
lod_levels
,
...
...
python/paddle/fluid/tests/unittests/test_py_reader_push_pop.py
0 → 100644
浏览文件 @
ebe3b5e7
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
import
numpy
as
np
from
threading
import
Thread
def
feed_data
(
feed_queue
,
inputs
):
for
in_data
in
inputs
:
feed_queue
.
push
(
in_data
)
class
TestPyReader
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
capacity
=
10
self
.
batch_size_min
=
10
self
.
batch_size_max
=
20
self
.
shapes
=
[(
-
1
,
3
,
2
,
1
),
(
-
1
,
1
)]
self
.
lod_levels
=
[
0
,
0
]
self
.
dtypes
=
[
'float32'
,
'int64'
]
self
.
iterations
=
20
def
test_single_thread_main
(
self
):
self
.
main
(
use_thread
=
False
)
def
test_multiple_thread_main
(
self
):
self
.
main
(
use_thread
=
True
)
def
main
(
self
,
use_thread
=
False
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
data_file
,
feed_queue
=
fluid
.
layers
.
py_reader
(
capacity
=
self
.
capacity
,
dtypes
=
self
.
dtypes
,
lod_levels
=
self
.
lod_levels
,
shapes
=
self
.
shapes
)
read_out_data
=
fluid
.
layers
.
read_file
(
data_file
)
self
.
inputs
=
[]
for
i
in
range
(
self
.
iterations
):
in_data
=
fluid
.
LoDTensorArray
()
batch_size
=
np
.
random
.
random_integers
(
self
.
batch_size_min
,
self
.
batch_size_max
)
for
shape
,
dtype
in
zip
(
self
.
shapes
,
self
.
dtypes
):
next_data
=
np
.
random
.
uniform
(
low
=
0
,
high
=
1000
,
size
=
(
batch_size
,
)
+
shape
[
1
:]).
astype
(
dtype
)
in_data
.
append
(
executor
.
as_lodtensor
(
next_data
))
self
.
inputs
.
append
(
in_data
)
executor
.
run
(
fluid
.
default_startup_program
())
self
.
outputs
=
[]
if
use_thread
:
thread
=
Thread
(
target
=
feed_data
,
args
=
(
feed_queue
,
self
.
inputs
))
thread
.
start
()
for
in_data
in
self
.
inputs
:
self
.
outputs
.
append
(
executor
.
run
(
fetch_list
=
list
(
read_out_data
)))
else
:
for
in_data
in
self
.
inputs
:
feed_queue
.
push
(
in_data
)
self
.
outputs
.
append
(
executor
.
run
(
fetch_list
=
list
(
read_out_data
)))
feed_queue
.
close
()
self
.
validate
()
def
validate
(
self
):
self
.
assertEqual
(
len
(
self
.
inputs
),
len
(
self
.
outputs
))
for
in_data_list
,
out_data_list
in
zip
(
self
.
inputs
,
self
.
outputs
):
self
.
assertEqual
(
len
(
in_data_list
),
len
(
out_data_list
))
in_data_list_np
=
[
np
.
array
(
in_lod_tensor
)
for
in_lod_tensor
in
in_data_list
]
for
in_data
,
out_data
in
zip
(
in_data_list_np
,
out_data_list
):
self
.
assertTrue
((
in_data
==
out_data
).
all
())
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py
0 → 100644
浏览文件 @
ebe3b5e7
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
import
threading
import
multiprocessing
import
os
def
as_tensor
(
np_array_or_tensor
,
place
=
None
):
if
isinstance
(
np_array_or_tensor
,
fluid
.
LoDTensor
):
return
np_array_or_tensor
if
place
is
None
:
place
=
fluid
.
CPUPlace
()
tensor
=
fluid
.
LoDTensor
()
tensor
.
set
(
np_array_or_tensor
,
place
)
return
tensor
def
as_numpy
(
tensor_or_numpy
):
return
tensor_or_numpy
if
isinstance
(
tensor_or_numpy
,
np
.
ndarray
)
else
np
.
array
(
tensor_or_numpy
)
def
feed_data
(
feed_queue
,
reader
):
data_generator
=
reader
()
while
True
:
data
=
next
(
data_generator
,
None
)
if
data
is
None
or
not
feed_queue
.
push
(
data
):
break
def
simple_fc_net
(
in_size
,
class_num
,
hidden_sizes
,
batch_size
,
queue_capacity
,
use_double_buffer
=
False
):
reader
,
feed_queue
=
fluid
.
layers
.
py_reader
(
capacity
=
queue_capacity
,
shapes
=
[[
-
1
,
in_size
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
reader
=
fluid
.
layers
.
batch
(
reader
,
batch_size
=
batch_size
)
if
use_double_buffer
:
reader
=
fluid
.
layers
.
double_buffer
(
reader
)
in_data
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
in_data
for
hidden_size
in
hidden_sizes
:
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
hidden_size
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
predict_label
=
fluid
.
layers
.
fc
(
hidden
,
size
=
class_num
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
cross_entropy
(
input
=
predict_label
,
label
=
label
))
optimizer
=
fluid
.
optimizer
.
Adam
()
optimizer
.
minimize
(
loss
)
return
in_data
,
label
,
loss
,
optimizer
,
feed_queue
class
TestPyReaderUsingExecutor
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
in_size
=
1000
self
.
hidden_sizes
=
[
50
,
30
,
20
]
self
.
class_num
=
10
self
.
batch_size
=
32
self
.
iterations
=
10
self
.
queue_capacity
=
50
def
test
(
self
):
for
use_cuda
in
[
False
,
True
]:
for
use_parallel_executor
in
[
False
,
True
]:
for
use_double_buffer
in
[
False
,
True
]:
print
(
'Test Parameters:'
),
print
({
'use_cuda'
:
use_cuda
,
'use_parallel_executor'
:
use_parallel_executor
,
'use_double_buffer'
:
use_double_buffer
})
self
.
main
(
use_cuda
,
use_parallel_executor
,
use_double_buffer
)
def
random_reader
(
self
):
def
reader
():
self
.
inputs
=
[]
cnt
=
0
while
True
:
tensors
=
fluid
.
LoDTensorArray
()
in_data
=
np
.
random
.
uniform
(
low
=
0
,
high
=
1
,
size
=
(
1
,
self
.
in_size
)).
astype
(
'float32'
)
tensors
.
append
(
as_tensor
(
in_data
))
label
=
np
.
random
.
random_integers
(
low
=
0
,
high
=
self
.
class_num
-
1
,
size
=
(
1
,
1
)).
astype
(
'int64'
)
tensors
.
append
(
as_tensor
(
label
))
if
cnt
<
self
.
iterations
*
self
.
batch_size
*
self
.
batch_size_times
:
if
cnt
%
(
self
.
batch_size
*
self
.
batch_size_times
)
==
0
:
self
.
inputs
.
append
([
in_data
,
label
])
else
:
self
.
inputs
[
-
1
][
0
]
=
np
.
concatenate
(
(
self
.
inputs
[
-
1
][
0
],
in_data
),
axis
=
0
)
self
.
inputs
[
-
1
][
1
]
=
np
.
concatenate
(
(
self
.
inputs
[
-
1
][
1
],
label
),
axis
=
0
)
elif
not
self
.
use_double_buffer
:
break
yield
tensors
cnt
+=
1
yield
None
return
reader
def
main
(
self
,
use_cuda
=
True
,
use_parallel_executor
=
False
,
use_double_buffer
=
False
):
assert
not
use_cuda
or
use_cuda
and
core
.
is_compiled_with_cuda
()
self
.
use_cuda
=
use_cuda
self
.
use_parallel_executor
=
use_parallel_executor
self
.
use_double_buffer
=
use_double_buffer
startup_program
=
fluid
.
Program
()
main_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
in_data
,
label
,
loss
,
optimizer
,
feed_queue
=
simple_fc_net
(
in_size
=
self
.
in_size
,
class_num
=
self
.
class_num
,
hidden_sizes
=
self
.
hidden_sizes
,
batch_size
=
self
.
batch_size
,
queue_capacity
=
self
.
queue_capacity
,
use_double_buffer
=
self
.
use_double_buffer
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
startup_program
)
if
use_parallel_executor
:
main_exe
=
fluid
.
ParallelExecutor
(
use_cuda
,
loss_name
=
loss
.
name
)
if
use_cuda
:
self
.
batch_size_times
=
core
.
get_cuda_device_count
()
else
:
self
.
batch_size_times
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
else
:
main_exe
=
startup_exe
self
.
batch_size_times
=
1
reader
=
self
.
random_reader
()
thread
=
threading
.
Thread
(
target
=
feed_data
,
args
=
(
feed_queue
,
reader
))
thread
.
start
()
self
.
outputs
=
[]
for
_
in
range
(
self
.
iterations
):
fetches
=
main_exe
.
run
(
fetch_list
=
[
in_data
.
name
,
label
.
name
])
fetches
=
[
as_numpy
(
fetch
)
for
fetch
in
fetches
]
self
.
outputs
.
append
(
fetches
)
feed_queue
.
close
()
self
.
validate
()
def
validate
(
self
):
self
.
assertEqual
(
len
(
self
.
inputs
),
len
(
self
.
outputs
))
for
batch_in
,
batch_out
in
zip
(
self
.
inputs
,
self
.
outputs
):
self
.
assertEqual
(
len
(
batch_in
),
len
(
batch_out
))
if
self
.
use_parallel_executor
and
not
self
.
use_double_buffer
:
self
.
validate_unordered_batch
(
batch_in
,
batch_out
)
else
:
for
in_data
,
out_data
in
zip
(
batch_in
,
batch_out
):
self
.
assertEqual
(
in_data
.
shape
,
out_data
.
shape
)
if
not
self
.
use_parallel_executor
:
self
.
assertTrue
((
in_data
==
out_data
).
all
())
def
validate_unordered_batch
(
self
,
batch_in
,
batch_out
):
out_index_left_set
=
set
(
range
(
self
.
batch_size
*
self
.
batch_size_times
))
mapping_num
=
0
for
i
in
range
(
self
.
batch_size
*
self
.
batch_size_times
):
for
j
in
out_index_left_set
:
flag
=
True
for
k
in
range
(
len
(
batch_in
)):
in_data
=
batch_in
[
k
][
i
]
out_data
=
batch_out
[
k
][
j
]
if
(
in_data
!=
out_data
).
any
():
flag
=
False
break
if
flag
:
out_index_left_set
.
remove
(
j
)
mapping_num
+=
1
break
self
.
assertEqual
(
mapping_num
,
self
.
batch_size
*
self
.
batch_size_times
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录