Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
eb2123e1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eb2123e1
编写于
3月 27, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc and jit. test=develop
上级
7920e3be
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
14 addition
and
10 deletion
+14
-10
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+2
-2
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+3
-2
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+1
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+1
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+2
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+4
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
eb2123e1
...
@@ -86,7 +86,7 @@ paddle.fluid.layers.conv2d (ArgSpec(args=['input', 'num_filters', 'filter_size',
...
@@ -86,7 +86,7 @@ paddle.fluid.layers.conv2d (ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)), ('document', '37042620f9bd3a2da6e5d3138b2f724b'))
paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)), ('document', '37042620f9bd3a2da6e5d3138b2f724b'))
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test'], varargs=None, keywords=None, defaults=(False,)), ('document', 'a194fb80614023f543df3949fbd0d0b8'))
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test'], varargs=None, keywords=None, defaults=(False,)), ('document', 'a194fb80614023f543df3949fbd0d0b8'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '19ef6f9cdd27feac8a1ae060f19c10b4'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '19ef6f9cdd27feac8a1ae060f19c10b4'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '5
02bad9e8bc7ef24817d0d4b20f61df3
'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '5
9b1c6bf2f0fa9dc649c85fef3a3b2ea
'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', 'bbd84e855e660cd1084bb71a2fd0cdaa'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', 'bbd84e855e660cd1084bb71a2fd0cdaa'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', '043de7333b79ee0ac55053c14ed81625'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', '043de7333b79ee0ac55053c14ed81625'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '859b887174d06f361658f69cb7c06d95'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '859b887174d06f361658f69cb7c06d95'))
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
eb2123e1
...
@@ -38,6 +38,8 @@ typedef enum {
...
@@ -38,6 +38,8 @@ typedef enum {
kNCHW16CMulNC
,
kNCHW16CMulNC
,
kSeqPool
,
kSeqPool
,
kSoftmax
,
kSoftmax
,
kStrideASum
,
kStrideScal
,
kVAdd
,
kVAdd
,
kVAddBias
,
kVAddBias
,
kVAddRelu
,
kVAddRelu
,
...
@@ -53,8 +55,6 @@ typedef enum {
...
@@ -53,8 +55,6 @@ typedef enum {
kVSquare
,
kVSquare
,
kVSub
,
kVSub
,
kVTanh
,
kVTanh
,
kStrideASum
,
kStrideScal
,
}
KernelType
;
}
KernelType
;
typedef
enum
{
typedef
enum
{
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
eb2123e1
...
@@ -50,11 +50,12 @@ void VTanh(const T* x, T* y, int n) {
...
@@ -50,11 +50,12 @@ void VTanh(const T* x, T* y, int n) {
compute_addbias
(
&
b
,
y
,
y
,
n
);
compute_addbias
(
&
b
,
y
,
y
,
n
);
}
}
// remain is the product of dimension shapes after the axis dimension
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
)
{
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
)
{
auto
compute_hmax
=
KernelFuncs
<
HMaxTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hmax
=
KernelFuncs
<
HMaxTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hsum
=
KernelFuncs
<
HSumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hsum
=
KernelFuncs
<
HSumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vscal
=
KernelFuncs
<
VScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vscal
=
KernelFuncs
<
VScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridesum
=
auto
compute_stride
a
sum
=
KernelFuncs
<
StrideASumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
KernelFuncs
<
StrideASumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridescal
=
auto
compute_stridescal
=
KernelFuncs
<
StrideScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
KernelFuncs
<
StrideScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
...
@@ -74,7 +75,7 @@ void Softmax(const T* x, T* y, int n, int bs, int remain) {
...
@@ -74,7 +75,7 @@ void Softmax(const T* x, T* y, int n, int bs, int remain) {
compute_vscal
(
&
scalar
,
y
,
y
,
n
);
compute_vscal
(
&
scalar
,
y
,
y
,
n
);
}
else
{
}
else
{
for
(
int
j
=
0
;
j
<
remain
;
++
j
)
{
for
(
int
j
=
0
;
j
<
remain
;
++
j
)
{
compute_stridesum
(
&
y
[
j
],
&
scalar
,
n
,
remain
);
compute_stride
a
sum
(
&
y
[
j
],
&
scalar
,
n
,
remain
);
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
scalar
=
static_cast
<
T
>
(
1
)
/
scalar
;
compute_stridescal
(
&
scalar
,
&
y
[
j
],
&
y
[
j
],
n
,
remain
);
compute_stridescal
(
&
scalar
,
&
y
[
j
],
&
y
[
j
],
n
,
remain
);
}
}
...
...
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
eb2123e1
...
@@ -134,6 +134,7 @@ void StrideASum(const T* x, T* res, int n, int stride);
...
@@ -134,6 +134,7 @@ void StrideASum(const T* x, T* res, int n, int stride);
template
<
typename
T
>
template
<
typename
T
>
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
);
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
);
// remain is the product of dimension shapes after the axis dimension
template
<
typename
T
>
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
=
1
)
{
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
=
1
)
{
std
::
vector
<
T
>
entities
(
bs
);
std
::
vector
<
T
>
entities
(
bs
);
...
...
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
eb2123e1
...
@@ -432,6 +432,7 @@ void StrideScal(const T* a, const T* x, T* y, int n, int stride) {
...
@@ -432,6 +432,7 @@ void StrideScal(const T* a, const T* x, T* y, int n, int stride) {
// y = e^(x - max(x))
// y = e^(x - max(x))
// y = y / sum(y)
// y = y / sum(y)
// remain is the product of dimension shapes after the axis dimension
template
<
typename
T
>
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
=
1
,
int
remain
=
1
)
{
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
=
1
,
int
remain
=
1
)
{
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
eb2123e1
...
@@ -798,10 +798,8 @@ template <typename KernelTuple, typename PlaceType>
...
@@ -798,10 +798,8 @@ template <typename KernelTuple, typename PlaceType>
void
TestKernelStrideScal
()
{
void
TestKernelStrideScal
()
{
using
T
=
typename
KernelTuple
::
data_type
;
using
T
=
typename
KernelTuple
::
data_type
;
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
VLOG
(
10
)
<<
"Test JITKernel: "
<<
jit
::
to_string
(
KernelTuple
::
kernel_type
);
// for (int d : TestSizes()) {
for
(
int
d
:
TestSizes
())
{
// for (int m : {1, 2, 3}) { // stride
for
(
int
m
:
{
1
,
2
,
3
})
{
// stride
for
(
int
d
:
{
4
})
{
for
(
int
m
:
{
2
})
{
// stride
if
(
m
>
d
||
d
%
m
!=
0
)
{
if
(
m
>
d
||
d
%
m
!=
0
)
{
continue
;
continue
;
}
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
eb2123e1
...
@@ -1826,7 +1826,7 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
...
@@ -1826,7 +1826,7 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
The dimension :attr:`axis` of the input tensor will be permuted to the last.
The dimension :attr:`axis` of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is
as
same as the dimension :attr:`axis` of the input
second dimension(row length) is
the
same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
squashes the K-dimensional(K is the width of the matrix, which is also the size
...
@@ -1864,7 +1864,10 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
...
@@ -1864,7 +1864,10 @@ def softmax(input, use_cudnn=False, name=None, axis=-1):
.. code-block:: python
.. code-block:: python
fc = fluid.layers.fc(input=x, size=10)
fc = fluid.layers.fc(input=x, size=10)
# perform softmax in the second dimension
softmax = fluid.layers.softmax(input=fc, axis=1)
softmax = fluid.layers.softmax(input=fc, axis=1)
# perform softmax in the last dimension
softmax = fluid.layers.softmax(input=fc, axis=-1)
"""
"""
helper
=
LayerHelper
(
'softmax'
,
**
locals
())
helper
=
LayerHelper
(
'softmax'
,
**
locals
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录