Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
eac2c3cf
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eac2c3cf
编写于
2月 28, 2018
作者:
E
emailweixu
提交者:
GitHub
2月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8505 from emailweixu/math_op
Correctly handling variable with batch dimension for math ops.
上级
0d878e4c
e9b8ebf4
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
167 addition
and
123 deletion
+167
-123
paddle/fluid/framework/ddim.cc
paddle/fluid/framework/ddim.cc
+8
-6
paddle/fluid/framework/ddim.h
paddle/fluid/framework/ddim.h
+2
-2
paddle/fluid/framework/dim.h
paddle/fluid/framework/dim.h
+40
-41
paddle/fluid/operators/detail/strided_memcpy.h
paddle/fluid/operators/detail/strided_memcpy.h
+23
-0
paddle/fluid/operators/elementwise_op.h
paddle/fluid/operators/elementwise_op.h
+7
-1
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+20
-59
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+3
-1
python/paddle/fluid/layers/math_op_patch.py
python/paddle/fluid/layers/math_op_patch.py
+26
-7
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_add_op.py
+24
-0
python/paddle/fluid/tests/unittests/test_math_op_patch.py
python/paddle/fluid/tests/unittests/test_math_op_patch.py
+14
-6
未找到文件。
paddle/fluid/framework/ddim.cc
浏览文件 @
eac2c3cf
...
...
@@ -26,12 +26,15 @@ Dim<i> make_dim(const int64_t* d) {
}
template
<
>
Dim
<
1
>
make_dim
<
1
>
(
const
int64_t
*
d
)
{
return
Dim
<
1
>
(
*
d
);
Dim
<
0
>
make_dim
<
0
>
(
const
int64_t
*
d
)
{
return
Dim
<
0
>
(
*
d
);
}
void
make_ddim
(
DDim
&
ddim
,
const
int64_t
*
dims
,
int
n
)
{
switch
(
n
)
{
case
0
:
ddim
=
make_dim
<
0
>
(
dims
);
break
;
case
1
:
ddim
=
make_dim
<
1
>
(
dims
);
break
;
...
...
@@ -190,7 +193,7 @@ struct VectorizeVisitor : public boost::static_visitor<> {
this
->
operator
()(
t
.
tail
);
}
void
operator
()(
const
Dim
<
1
>&
t
)
{
vector
.
push_back
(
t
.
head
);
}
void
operator
()(
const
Dim
<
0
>&
t
)
{
}
};
/// @endcond
...
...
@@ -247,9 +250,8 @@ struct SliceVectorizeVisitor : public boost::static_visitor<> {
}
}
void
operator
()(
const
Dim
<
1
>&
dim
)
{
PADDLE_ENFORCE
(
end
==
1
,
"End index in ddim slice is out of bound."
);
vector
.
push_back
(
dim
.
head
);
void
operator
()(
const
Dim
<
0
>&
dim
)
{
PADDLE_ENFORCE
(
end
==
0
,
"End index in ddim slice is out of bound."
);
}
};
...
...
paddle/fluid/framework/ddim.h
浏览文件 @
eac2c3cf
...
...
@@ -30,8 +30,8 @@ namespace framework {
* The number of dimensions must be between [1, 9].
*/
struct
DDim
{
typedef
boost
::
variant
<
Dim
<
1
>
,
Dim
<
2
>
,
Dim
<
3
>
,
Dim
<
4
>
,
Dim
<
5
>
,
Dim
<
6
>
,
Dim
<
7
>
,
Dim
<
8
>
,
Dim
<
9
>>
typedef
boost
::
variant
<
Dim
<
0
>
,
Dim
<
1
>
,
Dim
<
2
>
,
Dim
<
3
>
,
Dim
<
4
>
,
Dim
<
5
>
,
Dim
<
6
>
,
Dim
<
7
>
,
Dim
<
8
>
,
Dim
<
9
>>
DDimVar
;
DDimVar
var
;
...
...
paddle/fluid/framework/dim.h
浏览文件 @
eac2c3cf
...
...
@@ -72,38 +72,36 @@ struct Dim {
// Base case specialization
template
<
>
struct
Dim
<
1
>
{
static
constexpr
int
dimensions
=
1
;
struct
Dim
<
0
>
{
static
constexpr
int
dimensions
=
0
;
HOSTDEVICE
Dim
(
int64_t
_head
)
:
head
(
_head
)
{}
Dim
(
int64_t
_head
)
{}
HOSTDEVICE
Dim
()
:
head
(
0
)
{}
Dim
()
{}
HOSTDEVICE
Dim
(
int
idx
,
const
Dim
<
1
>&
size
)
:
head
(
idx
)
{
Dim
(
int
idx
,
const
Dim
<
0
>&
size
)
{
#ifndef __CUDA_ARCH__
if
(
idx
>
=
size
.
head
)
{
if
(
idx
>
0
)
{
throw
std
::
invalid_argument
(
"Index out of range."
);
}
#else
PADDLE_ASSERT
(
idx
<
size
.
head
);
PADDLE_ASSERT
(
idx
==
0
);
#endif
}
HOSTDEVICE
bool
operator
==
(
const
Dim
<
1
>&
o
)
const
{
return
(
head
==
o
.
head
)
;
}
bool
operator
==
(
const
Dim
<
0
>&
o
)
const
{
return
true
;
}
HOSTDEVICE
bool
operator
!=
(
const
Dim
<
1
>&
o
)
const
{
return
!
(
*
this
==
o
)
;
}
bool
operator
!=
(
const
Dim
<
0
>&
o
)
const
{
return
false
;
}
HOSTDEVICE
int64_t
&
operator
[](
int
idx
);
HOSTDEVICE
int64_t
operator
[](
int
idx
)
const
;
int64_t
head
;
};
namespace
{
...
...
@@ -154,15 +152,14 @@ HOSTDEVICE int64_t& indexer(Dim<D>& dim, int idx) {
}
template
<
>
HOSTDEVICE
int64_t
&
indexer
<
1
>
(
Dim
<
1
>&
dim
,
int
idx
)
{
HOSTDEVICE
int64_t
&
indexer
<
0
>
(
Dim
<
0
>&
dim
,
int
idx
)
{
#ifndef __CUDA_ARCH__
if
(
idx
!=
0
)
{
throw
std
::
invalid_argument
(
"Invalid index"
);
}
throw
std
::
invalid_argument
(
"Invalid index"
);
#else
PADDLE_ASSERT
(
idx
==
0
);
PADDLE_ASSERT
(
false
);
#endif
return
dim
.
head
;
static
int64_t
head
=
0
;
return
head
;
}
template
<
int
D
>
...
...
@@ -181,15 +178,14 @@ HOSTDEVICE int64_t indexer(const Dim<D>& dim, int idx) {
}
template
<
>
HOSTDEVICE
int64_t
indexer
<
1
>
(
const
Dim
<
1
>&
dim
,
int
idx
)
{
HOSTDEVICE
int64_t
indexer
<
0
>
(
const
Dim
<
0
>&
dim
,
int
idx
)
{
#ifndef __CUDA_ARCH__
if
(
idx
!=
0
)
{
throw
std
::
invalid_argument
(
"Invalid index"
);
}
throw
std
::
invalid_argument
(
"Invalid index"
);
#else
PADDLE_ASSERT
(
idx
==
0
);
PADDLE_ASSERT
(
false
);
#endif
return
dim
.
head
;
static
int64_t
head
=
0
;
return
head
;
}
}
// namespace
...
...
@@ -218,12 +214,12 @@ HOSTDEVICE int64_t& Dim<l>::operator[](int i) {
}
// Dynamic access to constant Dim
inline
HOSTDEVICE
int64_t
Dim
<
1
>::
operator
[](
int
i
)
const
{
inline
HOSTDEVICE
int64_t
Dim
<
0
>::
operator
[](
int
i
)
const
{
return
indexer
(
*
this
,
i
);
}
// Dynamic access to mutable Dim
inline
HOSTDEVICE
int64_t
&
Dim
<
1
>::
operator
[](
int
i
)
{
inline
HOSTDEVICE
int64_t
&
Dim
<
0
>::
operator
[](
int
i
)
{
return
indexer
(
*
this
,
i
);
}
...
...
@@ -251,8 +247,8 @@ HOSTDEVICE int64_t linearize(const Dim<i>& a, const Dim<i>& b) {
// Base case dot product of two Dims
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
int64_t
linearize
(
const
Dim
<
1
>&
a
,
const
Dim
<
1
>&
b
)
{
return
a
.
head
*
b
.
head
;
HOSTDEVICE
inline
int64_t
linearize
(
const
Dim
<
0
>&
a
,
const
Dim
<
0
>&
b
)
{
return
0
;
}
// Product of a Dim
...
...
@@ -264,8 +260,8 @@ HOSTDEVICE int64_t product(const Dim<i>& a, int prod = 1) {
// Base case product of a Dim
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
int64_t
product
(
const
Dim
<
1
>&
a
,
int
prod
)
{
return
prod
*
a
.
head
;
HOSTDEVICE
inline
int64_t
product
(
const
Dim
<
0
>&
a
,
int
prod
)
{
return
prod
;
}
// Is 0 <= idx_i < size_i for all i?
...
...
@@ -278,8 +274,8 @@ HOSTDEVICE bool contained(const Dim<i>& idx, const Dim<i>& size) {
// Base case of is 0 <= idx_i < size_i ?
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
bool
contained
(
const
Dim
<
1
>&
idx
,
const
Dim
<
1
>&
size
)
{
return
((
0
<=
idx
.
head
)
&&
(
idx
.
head
<
size
.
head
))
;
HOSTDEVICE
inline
bool
contained
(
const
Dim
<
0
>&
idx
,
const
Dim
<
0
>&
size
)
{
return
true
;
}
/**
...
...
@@ -294,8 +290,8 @@ HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i>& src, int mul = 1) {
// Base case of ex_prefix_mul
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
ex_prefix_mul
(
const
Dim
<
1
>&
src
,
int
mul
)
{
return
Dim
<
1
>
(
mul
);
HOSTDEVICE
inline
Dim
<
0
>
ex_prefix_mul
(
const
Dim
<
0
>&
src
,
int
mul
)
{
return
Dim
<
0
>
(
);
}
///\endcond
...
...
@@ -309,8 +305,8 @@ HOSTDEVICE Dim<i> dim_plus(const Dim<i>& a, const Dim<i>& b) {
// Base case
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
dim_plus
(
const
Dim
<
1
>&
a
,
const
Dim
<
1
>&
b
)
{
return
Dim
<
1
>
(
a
.
head
+
b
.
head
);
HOSTDEVICE
inline
Dim
<
0
>
dim_plus
(
const
Dim
<
0
>&
a
,
const
Dim
<
0
>&
b
)
{
return
Dim
<
0
>
(
);
}
template
<
int
i
>
...
...
@@ -328,8 +324,8 @@ HOSTDEVICE Dim<i> dim_mult(const Dim<i>& a, const Dim<i>& b) {
// Base case
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
dim_mult
(
const
Dim
<
1
>&
a
,
const
Dim
<
1
>&
b
)
{
return
Dim
<
1
>
(
a
.
head
*
b
.
head
);
HOSTDEVICE
inline
Dim
<
0
>
dim_mult
(
const
Dim
<
0
>&
a
,
const
Dim
<
0
>&
b
)
{
return
Dim
<
0
>
(
);
}
template
<
int
i
>
...
...
@@ -356,10 +352,9 @@ HOSTDEVICE Dim<i> normalize_strides(const Dim<i>& size, const Dim<i>& stride) {
///\cond HIDDEN
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
normalize_strides
(
const
Dim
<
1
>&
size
,
const
Dim
<
1
>&
stride
)
{
int
norm_stride
=
size
.
head
==
1
?
0
:
stride
.
head
;
return
Dim
<
1
>
(
norm_stride
);
HOSTDEVICE
inline
Dim
<
0
>
normalize_strides
(
const
Dim
<
0
>&
size
,
const
Dim
<
0
>&
stride
)
{
return
Dim
<
0
>
();
}
///\endcond
...
...
@@ -394,6 +389,10 @@ typename std::enable_if<(i == 1), std::ostream&>::type operator<<(
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Dim
<
0
>&
d
)
{
return
os
;
}
template
<
int
i
>
HOST
std
::
string
Dim
<
i
>::
to_string
()
const
{
std
::
stringstream
stream
;
...
...
paddle/fluid/operators/detail/strided_memcpy.h
浏览文件 @
eac2c3cf
...
...
@@ -24,6 +24,29 @@ namespace detail {
template
<
typename
T
,
int
Rank
>
struct
StridedMemcpyFunctor
;
template
<
typename
T
>
struct
StridedMemcpyFunctor
<
T
,
0
>
{
void
operator
()(
const
platform
::
DeviceContext
&
dev_ctx
,
const
T
*
src
,
framework
::
Dim
<
0
>
src_stride
,
framework
::
Dim
<
0
>
dst_dim
,
framework
::
Dim
<
0
>
dst_stride
,
T
*
dst
)
const
{
auto
place
=
dev_ctx
.
GetPlace
();
if
(
platform
::
is_cpu_place
(
place
))
{
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
memory
::
Copy
(
cpu_place
,
dst
,
cpu_place
,
src
,
sizeof
(
T
));
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
auto
&
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
);
memory
::
Copy
(
gpu_place
,
dst
,
gpu_place
,
src
,
sizeof
(
T
),
cuda_ctx
.
stream
());
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
}
}
};
template
<
typename
T
>
struct
StridedMemcpyFunctor
<
T
,
1
>
{
void
operator
()(
const
platform
::
DeviceContext
&
dev_ctx
,
const
T
*
src
,
...
...
paddle/fluid/operators/elementwise_op.h
浏览文件 @
eac2c3cf
...
...
@@ -65,12 +65,17 @@ smaller than or equal to the dimensions of $X$.
There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
2. The shape of $Y$ is a subset of $X$.
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions
of size 1 for $Y$ will be ignored for the consideration of subsequence.
For case 2:
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
If axis is -1, it is treated as axis=rank(X)-rank(Y).
For example
.. code-block:: python
...
...
@@ -79,6 +84,7 @@ For example
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
...
...
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
eac2c3cf
...
...
@@ -62,6 +62,19 @@ inline void get_mid_dims(const framework::DDim& x_dims,
}
}
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
&
dims
)
{
// Remove trailing dimensions of size 1 for y
auto
actual_dims_size
=
dims
.
size
();
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
if
(
dims
[
actual_dims_size
-
1
]
!=
1
)
break
;
}
if
(
actual_dims_size
!=
dims
.
size
())
{
auto
actual_dims
=
framework
::
vectorize
(
dims
);
actual_dims
.
resize
(
actual_dims_size
);
dims
=
framework
::
make_ddim
(
actual_dims
);
}
}
template
<
typename
T
,
typename
DeviceContext
>
class
RowwiseTransformIterator
;
template
<
typename
T
,
typename
DeviceContext
>
...
...
@@ -264,44 +277,6 @@ class TransformFunctor {
} \
}
template
<
class
functor
,
typename
DeviceContext
,
typename
T
>
void
ElementwiseCompute
(
const
framework
::
ExecutionContext
&
ctx
)
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
);
if
(
x_dims
==
y_dims
)
{
functor
f
;
f
.
template
Run
<
DeviceContext
,
T
>(
x
,
y
,
z
,
ctx
);
return
;
}
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
functor
f
;
f
.
template
RunBroadCast
<
DeviceContext
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
);
return
;
}
else
{
functor
f
;
f
.
template
RunBroadCast2
<
DeviceContext
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
,
post
);
return
;
}
}
#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR
(
Add
,
EIGEN_ADD
);
...
...
@@ -496,14 +471,10 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
auto
x_dim
=
x
.
dims
();
auto
y_dim
=
y
.
dims
();
if
(
y_dim
.
size
()
==
1
&&
y_dim
[
0
]
==
1
)
{
// y is a scalar
auto
extended_dims
=
framework
::
vectorize
(
x_dim
);
extended_dims
.
push_back
(
1
);
x_dim
=
framework
::
make_ddim
(
extended_dims
);
}
axis
=
(
axis
==
-
1
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
);
trim_trailing_singular_dims
(
y_dim
);
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
...
...
@@ -571,14 +542,9 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
return
;
}
if
(
y_dims
.
size
()
==
1
&&
y_dims
[
0
]
==
1
)
{
// y is a scalar
auto
extended_dims
=
framework
::
vectorize
(
x_dims
);
extended_dims
.
push_back
(
1
);
x_dims
=
framework
::
make_ddim
(
extended_dims
);
}
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
trim_trailing_singular_dims
(
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
...
...
@@ -613,16 +579,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
return
;
}
if
(
y_dims
.
size
()
==
1
&&
y_dims
[
0
]
==
1
)
{
// y is a scalar
auto
extended_dims
=
framework
::
vectorize
(
x_dims
);
extended_dims
.
push_back
(
1
);
x_dims
=
framework
::
make_ddim
(
extended_dims
);
}
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
trim_trailing_singular_dims
(
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
...
...
python/paddle/fluid/executor.py
浏览文件 @
eac2c3cf
...
...
@@ -14,7 +14,7 @@
import
numpy
as
np
import
contextlib
from
framework
import
Program
,
default_main_program
from
framework
import
Program
,
default_main_program
,
Variable
from
.
import
core
__all__
=
[
...
...
@@ -281,6 +281,8 @@ class Executor(object):
if
not
has_fetch_operators
(
global_block
,
fetch_list
,
fetch_var_name
):
for
i
,
var
in
enumerate
(
fetch_list
):
assert
isinstance
(
var
,
Variable
)
or
isinstance
(
var
,
str
),
(
"Wrong type for fetch_list[%s]: %s"
%
(
i
,
type
(
var
)))
global_block
.
append_op
(
type
=
'fetch'
,
inputs
=
{
'X'
:
[
var
]},
...
...
python/paddle/fluid/layers/math_op_patch.py
浏览文件 @
eac2c3cf
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -53,12 +53,22 @@ def monkey_patch_variable():
value
=
float
(
value
)
tmp_name
=
unique_tmp_name
()
var
=
ref_var
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
batch_dim
=
-
1
for
i
,
d
in
enumerate
(
ref_var
.
shape
):
if
d
<
0
:
batch_dim
=
i
break
assert
batch_dim
!=
-
1
ref_var
.
block
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
outputs
=
{
'Out'
:
[
var
]},
inputs
=
{
'Input'
:
[
ref_var
]},
attrs
=
{
'shape'
:
ref_var
.
shape
,
'value'
:
value
})
attrs
=
{
'shape'
:
ref_var
.
shape
,
'value'
:
value
,
'input_dim_idx'
:
batch_dim
,
'output_dim_idx'
:
batch_dim
})
return
var
def
astype
(
self
,
dtype
):
...
...
@@ -118,11 +128,20 @@ def monkey_patch_variable():
tmp_name
=
unique_tmp_name
()
out
=
self
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
lhs_dtype
)
axis
=
-
1
if
other_var
.
shape
[
0
]
==
-
1
:
axis
=
0
assert
len
(
self
.
shape
)
>=
len
(
other_var
.
shape
),
(
"The rank of the first argument of an binary operator cannot "
"be smaller than the rank of its second argument: %s vs %s"
%
(
len
(
self
.
shape
),
len
(
other_var
.
shape
)))
self
.
block
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
self
],
'Y'
:
[
other_var
]},
outputs
=
{
'Out'
:
out
})
outputs
=
{
'Out'
:
out
},
attrs
=
{
'axis'
:
axis
})
return
out
comment
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
).
comment
...
...
@@ -131,7 +150,7 @@ def monkey_patch_variable():
{0}
Args:
self(Variable): left hand variable
other_var(Variable|float|int): right hand variable
other_var(Variable|float|int): right hand variable
Returns:
Variable
...
...
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
浏览文件 @
eac2c3cf
...
...
@@ -50,6 +50,16 @@ class TestElementwiseAddOp_scalar(TestElementwiseOp):
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
]}
class
TestElementwiseAddOp_scalar2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
]}
class
TestElementwiseAddOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
...
...
@@ -115,6 +125,20 @@ class TestElementwiseAddOp_broadcast_3(TestElementwiseOp):
}
class
TestElementwiseAddOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
1
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
].
reshape
(
2
,
1
,
1
,
1
)
}
class
TestElementwiseAddOp_rowwise_add_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
...
...
python/paddle/fluid/tests/unittests/test_math_op_patch.py
浏览文件 @
eac2c3cf
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -23,13 +23,21 @@ class TestMathOpPatches(unittest.TestCase):
def
test_add_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
a
+
10
ab
=
fluid
.
layers
.
concat
(
input
=
[
a
,
b
],
axis
=
1
)
c
=
ab
+
10
d
=
ab
+
a
# e = a + ab
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
b_np
,
c_np
,
d_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
,
c
,
d
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
+
10
,
b_np
))
ab_np
=
numpy
.
concatenate
([
a_np
,
b_np
],
axis
=
1
)
self
.
assertTrue
(
numpy
.
allclose
(
ab_np
+
10
,
c_np
))
d_expected
=
ab_np
+
numpy
.
concatenate
([
a_np
,
a_np
],
axis
=
1
)
self
.
assertTrue
(
numpy
.
allclose
(
d_expected
,
d_np
))
@
decorators
.
prog_scope
()
def
test_radd_scalar
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录