Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ea5b2f26
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ea5b2f26
编写于
3月 28, 2022
作者:
D
danleifeng
提交者:
GitHub
3月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fused_seqpool_cvm op (#37928)
* add fused_seqpool_cvm op;test=develop
上级
822a2d1f
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
836 addition
and
1 deletion
+836
-1
paddle/fluid/operators/fused/fused_seqpool_cvm_op.cc
paddle/fluid/operators/fused/fused_seqpool_cvm_op.cc
+237
-0
paddle/fluid/operators/fused/fused_seqpool_cvm_op.cu
paddle/fluid/operators/fused/fused_seqpool_cvm_op.cu
+492
-0
paddle/fluid/operators/fused/fused_seqpool_cvm_op.h
paddle/fluid/operators/fused/fused_seqpool_cvm_op.h
+48
-0
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+59
-1
未找到文件。
paddle/fluid/operators/fused/fused_seqpool_cvm_op.cc
0 → 100644
浏览文件 @
ea5b2f26
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fused_seqpool_cvm_op.h"
#include <string>
namespace
paddle
{
namespace
operators
{
class
FusedSeqpoolCVMOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_GE
(
ctx
->
Inputs
(
"X"
).
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Inputs(X) of FusedSeqpoolCVMOp should not be empty."
));
PADDLE_ENFORCE_GE
(
ctx
->
Outputs
(
"Out"
).
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Outputs(Out) of FusedSeqpoolCVMOp should not be empty."
));
auto
cvm_dims
=
ctx
->
GetInputDim
(
"CVM"
);
PADDLE_ENFORCE_EQ
(
cvm_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"Input(CVM)'s rank should be 2."
));
PADDLE_ENFORCE_EQ
(
cvm_dims
[
1
],
2UL
,
platform
::
errors
::
InvalidArgument
(
"The 2nd dimension of "
"Input(CVM) should be 2."
));
auto
ins_dims
=
ctx
->
GetInputsDim
(
"X"
);
const
int
cvm_offset
=
ctx
->
Attrs
().
Get
<
int
>
(
"cvm_offset"
);
const
size_t
num_inputs
=
ins_dims
.
size
();
std
::
vector
<
framework
::
DDim
>
outs_dims
;
outs_dims
.
resize
(
num_inputs
);
bool
use_cvm
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_cvm"
);
PADDLE_ENFORCE_GT
(
num_inputs
,
0UL
,
platform
::
errors
::
InvalidArgument
(
"Input tensors count should be greater than 0, "
"but received value is %d."
,
num_inputs
));
// The output height should be confirmed in Compute,
// since input lod is not accessible here.
PADDLE_ENFORCE_EQ
(
ins_dims
[
0
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The dims size of first input should be equal to 2, "
"but received value is %d."
,
ins_dims
[
0
].
size
()));
for
(
size_t
i
=
0
;
i
<
num_inputs
;
++
i
)
{
const
auto
dims
=
ins_dims
[
i
];
int
rank
=
dims
.
size
();
if
(
use_cvm
)
{
PADDLE_ENFORCE_GT
(
dims
[
rank
-
1
],
2
,
platform
::
errors
::
InvalidArgument
(
"Shape error in %lu id, the last dimension(embedding) of the "
"'X' tensor must be larger than 2."
,
i
));
}
// input lod is not accessible here
std
::
vector
<
int64_t
>
out_dim
;
if
(
use_cvm
)
{
out_dim
=
{
-
1
,
dims
[
rank
-
1
]};
}
else
{
out_dim
=
{
-
1
,
dims
[
rank
-
1
]
-
cvm_offset
};
}
outs_dims
[
i
]
=
phi
::
make_ddim
(
out_dim
);
}
ctx
->
SetOutputsDim
(
"Out"
,
outs_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
inputs
=
ctx
.
MultiInput
<
LoDTensor
>
(
"X"
);
auto
input_data_type
=
framework
::
proto
::
VarType
::
Type
(
0
);
bool
flag
=
0
;
for
(
auto
*
input
:
inputs
)
{
if
(
input
->
IsInitialized
()
&&
input
->
numel
()
>
0
)
{
input_data_type
=
framework
::
TransToProtoVarType
(
input
->
dtype
());
flag
=
1
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
flag
,
1
,
platform
::
errors
::
InvalidArgument
(
"All Inputs of fused_seqpool_cvm OP are Empty!"
));
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
// return framework::OpKernelType(framework::proto::VarType::FP32,
// ctx.device_context());
// return framework::OpKernelType(
// OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class
FusedSeqpoolCVMOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(vector<LoDTensor>) The input tensors of"
" operator."
)
.
AsDuplicable
();
AddInput
(
"CVM"
,
"(Tensor), a 2-D Tensor with shape [N x 2], where N is the batch "
"size, 2 is show and click."
);
AddOutput
(
"Out"
,
"(vector<Tensor>) The output of Op does not contain LoD "
"information."
)
.
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"pooltype"
,
"(string, default 'SUM') the pooling pooltype of "
"SequencePoolOp, only support SUM now."
)
.
SetDefault
(
"SUM"
)
.
InEnum
({
"SUM"
});
AddAttr
<
float
>
(
"pad_value"
,
"(float, default 0.0) The value to pad for empty sequence."
)
.
SetDefault
(
0.0
);
AddAttr
<
bool
>
(
"use_cvm"
,
"bool, use cvm or not"
).
SetDefault
(
true
);
AddAttr
<
int
>
(
"cvm_offset"
,
"(int, default 2)"
).
SetDefault
(
2
);
AddComment
(
R"DOC(
Fuse multiple pairs of Sequence Pool and CVM Operator.
)DOC"
);
}
};
class
FusedSeqpoolCVMGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
og_dims
=
ctx
->
GetInputsDim
(
framework
::
GradVarName
(
"Out"
));
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
auto
cvm_dims
=
ctx
->
GetInputDim
(
"CVM"
);
const
int
cvm_offset
=
ctx
->
Attrs
().
Get
<
int
>
(
"cvm_offset"
);
bool
use_cvm
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_cvm"
);
PADDLE_ENFORCE_EQ
(
cvm_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(CVM)'s rank should be 2."
));
for
(
size_t
i
=
0
;
i
<
og_dims
.
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
og_dims
[
i
].
size
(),
x_dims
[
i
].
size
(),
platform
::
errors
::
InvalidArgument
(
"The rank of output grad must equal to Input(X). But "
"received: input rank %u, input shape [%s]."
,
og_dims
[
i
].
size
(),
og_dims
[
i
]));
if
(
use_cvm
)
{
auto
o_dim
=
og_dims
[
i
][
og_dims
[
i
].
size
()
-
1
];
PADDLE_ENFORCE_EQ
(
o_dim
,
x_dims
[
i
][
og_dims
[
i
].
size
()
-
1
],
platform
::
errors
::
InvalidArgument
(
"The dimension mismatch between Input(OUT@GRAD) and "
"Input(X). Received Input(OUT@GRAD): input rank %u, "
"input shape [%s]; received Input(X): input rank %u, "
"input shape [%s]."
,
og_dims
[
i
].
size
(),
og_dims
[
i
],
x_dims
[
i
].
size
(),
x_dims
[
i
]));
}
else
{
PADDLE_ENFORCE_EQ
(
og_dims
[
i
][
og_dims
[
i
].
size
()
-
1
],
x_dims
[
i
][
og_dims
[
i
].
size
()
-
1
]
-
cvm_offset
,
platform
::
errors
::
InvalidArgument
(
"The dimension mismatch between Input(OUT@GRAD) and "
"Input(X). Received Input(OUT@GRAD): input rank %u, "
"input shape [%s]; received Input(X): input rank %u, "
"input shape [%s]."
,
og_dims
[
i
].
size
(),
og_dims
[
i
],
x_dims
[
i
].
size
(),
x_dims
[
i
]));
}
}
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
),
i
,
i
);
ctx
->
ShareDim
(
"X"
,
framework
::
GradVarName
(
"X"
),
i
,
i
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
());
}
};
template
<
typename
T
>
class
FusedSeqpoolCVMGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op_desc_ptr
)
const
override
{
op_desc_ptr
->
SetType
(
"fused_seqpool_cvm_grad"
);
op_desc_ptr
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op_desc_ptr
->
SetInput
(
"CVM"
,
this
->
Input
(
"CVM"
));
op_desc_ptr
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
,
false
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"CVM"
),
this
->
InputGrad
(
"CVM"
));
op_desc_ptr
->
SetAttrMap
(
this
->
Attrs
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OPERATOR
(
fused_seqpool_cvm
,
ops
::
FusedSeqpoolCVMOp
,
ops
::
FusedSeqpoolCVMOpMaker
,
ops
::
FusedSeqpoolCVMGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
FusedSeqpoolCVMGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
fused_seqpool_cvm_grad
,
ops
::
FusedSeqpoolCVMGradOp
)
REGISTER_OP_CPU_KERNEL
(
fused_seqpool_cvm
,
ops
::
FusedSeqpoolCVMOpCPUKernel
<
float
>
)
REGISTER_OP_CPU_KERNEL
(
fused_seqpool_cvm_grad
,
ops
::
FusedSeqpoolCVMGradOpCPUKernel
<
float
>
)
paddle/fluid/operators/fused/fused_seqpool_cvm_op.cu
0 → 100644
浏览文件 @
ea5b2f26
此差异已折叠。
点击以展开。
paddle/fluid/operators/fused/fused_seqpool_cvm_op.h
0 → 100644
浏览文件 @
ea5b2f26
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
class
FusedSeqpoolCVMOpCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unimplemented CPU kernel for FusedSeqpoolCVMOp, only support GPU "
"now."
));
}
};
template
<
typename
T
>
class
FusedSeqpoolCVMGradOpCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unimplemented CPU kernel for FusedSeqpoolCVMGradOp, only support GPU "
"now."
));
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
ea5b2f26
...
...
@@ -44,7 +44,7 @@ __all__ = [
'multiclass_nms2'
,
'search_pyramid_hash'
,
'shuffle_batch'
,
'partial_concat'
,
'sparse_embedding'
,
'partial_sum'
,
'tdm_child'
,
'rank_attention'
,
'tdm_sampler'
,
'batch_fc'
,
'_pull_box_extended_sparse'
,
'bilateral_slice'
,
'correlation'
,
'fused_bn_add_act'
'correlation'
,
'fused_bn_add_act'
,
'fused_seqpool_cvm'
]
...
...
@@ -523,6 +523,64 @@ def fused_embedding_seq_pool(input,
return
out
def
fused_seqpool_cvm
(
input
,
pool_type
,
cvm
,
pad_value
=
0.0
,
use_cvm
=
True
,
cvm_offset
=
2
):
"""
**Embedding Sequence pool**
This layer is the fusion of sequence_pool and continuous_value_model.
**Notes: The Op only receives List of LoDTensor as input, only support SUM pooling now.
Args:
input(Variable|list of Variable): Input is List of LoDTensor.
pool_type(str): pooling type, only support SUM pooling now.
cvm(Variable): cvm Variable.
pad_value(float): padding value of sequence pool.
use_cvm(bool): use cvm or not.
Returns:
Variable|list of Variable: The tensor variable storing sequence pool and cvm
of input.
"""
helper
=
LayerHelper
(
'fused_seqpool_cvm'
,
**
locals
())
if
pool_type
.
upper
()
!=
'SUM'
:
raise
ValueError
(
"fused_seqpool_cvm only support SUM pooling now, and your type is: "
+
pool_type
)
check_type
(
input
,
'input'
,
list
,
'fused_seqpool_cvm'
)
if
isinstance
(
input
,
list
):
for
_input
in
input
:
check_variable_and_dtype
(
_input
,
'input'
,
[
'float32'
],
'fused_seqpool_cvm'
)
dtype
=
helper
.
input_dtype
()
inputs
=
helper
.
multiple_input
()
outs
=
[
helper
.
create_variable_for_type_inference
(
dtype
)
for
i
in
range
(
len
(
inputs
))
]
helper
.
append_op
(
type
=
"fused_seqpool_cvm"
,
inputs
=
{
"X"
:
inputs
,
"CVM"
:
cvm
},
outputs
=
{
"Out"
:
outs
},
attrs
=
{
"pooltype"
:
pool_type
.
upper
(),
"pad_value"
:
pad_value
,
"use_cvm"
:
use_cvm
,
"cvm_offset"
:
cvm_offset
,
})
return
outs
def
multiclass_nms2
(
bboxes
,
scores
,
score_threshold
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录