提交 e9cd3867 编写于 作者: Q qiaolongfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into rnn

import paddle.v2 as paddle
import mnist_util
def train_reader():
train_file = './data/raw_data/train'
generator = mnist_util.read_from_mnist(train_file)
for item in generator:
yield item
def main():
paddle.init(use_gpu=False, trainer_count=1)
......@@ -40,11 +31,13 @@ def main():
trainer = paddle.trainer.SGD(update_equation=adam_optimizer)
trainer.train(
train_data_reader=train_reader,
reader=paddle.reader.batched(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=32),
cost=cost,
parameters=parameters,
event_handler=event_handler,
batch_size=32, # batch size should be refactor in Data reader
reader_dict={images.name: 0,
label.name: 1})
......
......@@ -92,7 +92,6 @@ void CosSimForward<DEVICE_TYPE_GPU>(GpuMatrix& out_mat,
CHECK(in1_mat.useGpu_ == true && in2_mat.useGpu_ == true)
<< "Matrix type are not GPU";
size_t num_samples = out_mat.getHeight();
size_t dim = in1_mat.getWidth();
real* out = out_mat.getData();
const real* x = in1_mat.getData();
......
......@@ -4,7 +4,7 @@ set(OUTPUT_DIR
file(GLOB TRAINER_PY_FILES . ./paddle/trainer/*.py)
file(GLOB HELPERS_PY_FILES . ./paddle/trainer_config_helpers/*.py)
file(GLOB UTILS_PY_FILES . ./paddle/utils/*.py)
file(GLOB V2_PY_FILES . ./paddle/v2/*.py)
file(GLOB_RECURSE V2_PY_FILES ./paddle/v2/ *.py)
set(PY_FILES paddle/__init__.py
${TRAINER_PY_FILES}
......@@ -24,7 +24,7 @@ add_custom_target(paddle_python ALL DEPENDS
${OUTPUT_DIR}/.timestamp)
add_subdirectory(paddle/trainer_config_helpers/tests)
add_subdirectory(paddle/reader/tests)
add_subdirectory(paddle/v2/reader/tests)
add_subdirectory(paddle/v2/tests)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
......
add_test(NAME reader_decorator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/decorator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME reader_creator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/creator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
......@@ -52,6 +52,10 @@ def wrap_param_default(param_names=None,
kwargs[name] = default_factory(func)
return func(*args, **kwargs)
if hasattr(func, 'argspec'):
__wrapper__.argspec = func.argspec
else:
__wrapper__.argspec = inspect.getargspec(func)
return __wrapper__
return __impl__
......
......@@ -14,6 +14,7 @@
import functools
import collections
import inspect
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
......@@ -316,6 +317,11 @@ def layer_support(*attrs):
val.check(method.__name__)
return method(*args, **kwargs)
if hasattr(method, 'argspec'):
wrapper.argspec = method.argspec
else:
wrapper.argspec = inspect.getargspec(method)
return wrapper
return decorator
......
......@@ -20,13 +20,16 @@ import event
import data_type
import topology
import data_feeder
from . import dataset
from . import reader
import attr
import pooling
import py_paddle.swig_paddle as api
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'topology'
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology'
]
......
"""
CIFAR Dataset.
URL: https://www.cs.toronto.edu/~kriz/cifar.html
the default train_creator, test_creator used for CIFAR-10 dataset.
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
"""
import cPickle
import itertools
import tarfile
import numpy
import paddle.v2.dataset.common
import tarfile
from config import download
__all__ = [
'cifar_100_train_creator', 'cifar_100_test_creator', 'train_creator',
'test_creator'
]
__all__ = ['train100', 'test100', 'train10', 'test10']
CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
def __read_batch__(filename, sub_name):
def reader():
def __read_one_batch_impl__(batch):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader_creator(filename, sub_name):
def read_batch(batch):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader():
with tarfile.open(filename, mode='r') as f:
names = (each_item.name for each_item in f
if sub_name in each_item.name)
for name in names:
batch = cPickle.load(f.extractfile(name))
for item in __read_one_batch_impl__(batch):
for item in read_batch(batch):
yield item
return reader
def cifar_100_train_creator():
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
return __read_batch__(fn, 'train')
def cifar_100_test_creator():
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
return __read_batch__(fn, 'test')
def train_creator():
"""
Default train reader creator. Use CIFAR-10 dataset.
"""
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
return __read_batch__(fn, 'data_batch')
def train100():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
'train')
def test_creator():
"""
Default test reader creator. Use CIFAR-10 dataset.
"""
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
return __read_batch__(fn, 'test_batch')
def test100():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
'test')
def unittest():
for _ in train_creator()():
pass
for _ in test_creator()():
pass
def train10():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'data_batch')
if __name__ == '__main__':
unittest()
def test10():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'test_batch')
import requests
import hashlib
import os
import shutil
__all__ = ['DATA_HOME', 'download', 'md5file']
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
def md5file(fname):
hash_md5 = hashlib.md5()
f = open(fname, "rb")
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
f.close()
return hash_md5.hexdigest()
def download(url, module_name, md5sum):
dirname = os.path.join(DATA_HOME, module_name)
if not os.path.exists(dirname):
os.makedirs(dirname)
filename = os.path.join(dirname, url.split('/')[-1])
if not (os.path.exists(filename) and md5file(filename) == md5sum):
r = requests.get(url, stream=True)
with open(filename, 'w') as f:
shutil.copyfileobj(r.raw, f)
return filename
import hashlib
import os
import shutil
import urllib2
__all__ = ['DATA_HOME', 'download']
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
def download(url, md5):
filename = os.path.split(url)[-1]
assert DATA_HOME is not None
filepath = os.path.join(DATA_HOME, md5)
if not os.path.exists(filepath):
os.makedirs(filepath)
__full_file__ = os.path.join(filepath, filename)
def __file_ok__():
if not os.path.exists(__full_file__):
return False
md5_hash = hashlib.md5()
with open(__full_file__, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
md5_hash.update(chunk)
return md5_hash.hexdigest() == md5
while not __file_ok__():
response = urllib2.urlopen(url)
with open(__full_file__, mode='wb') as of:
shutil.copyfileobj(fsrc=response, fdst=of)
return __full_file__
import sklearn.datasets.mldata
import sklearn.model_selection
"""
MNIST dataset.
"""
import paddle.v2.dataset.common
import subprocess
import numpy
from config import DATA_HOME
import platform
__all__ = ['train', 'test']
__all__ = ['train_creator', 'test_creator']
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '25e3cc63507ef6e98d5dc541e8672bb6'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = '4e9511fe019b2189026bd0421ba7b688'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
def __mnist_reader_creator__(data, target):
def reader_creator(image_filename, label_filename, buffer_size):
def reader():
n_samples = data.shape[0]
for i in xrange(n_samples):
yield (data[i] / 255.0).astype(numpy.float32), int(target[i])
if platform.system() == 'Darwin':
zcat_cmd = 'gzcat'
elif platform.system() == 'Linux':
zcat_cmd = 'zcat'
else:
raise NotImplementedError()
return reader
# According to http://stackoverflow.com/a/38061619/724872, we
# cannot use standard package gzip here.
m = subprocess.Popen([zcat_cmd, image_filename], stdout=subprocess.PIPE)
m.stdout.read(16) # skip some magic bytes
l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE)
l.stdout.read(8) # skip some magic bytes
while True:
labels = numpy.fromfile(
l.stdout, 'ubyte', count=buffer_size).astype("int")
TEST_SIZE = 10000
if labels.size != buffer_size:
break # numpy.fromfile returns empty slice after EOF.
data = sklearn.datasets.mldata.fetch_mldata(
"MNIST original", data_home=DATA_HOME)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
data.data, data.target, test_size=TEST_SIZE, random_state=0)
images = numpy.fromfile(
m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
(buffer_size, 28 * 28)).astype('float32')
images = images / 255.0 * 2.0 - 1.0
def train_creator():
return __mnist_reader_creator__(X_train, y_train)
for i in xrange(buffer_size):
yield images[i, :], int(labels[i])
m.terminate()
l.terminate()
def test_creator():
return __mnist_reader_creator__(X_test, y_test)
return reader
def unittest():
assert len(list(test_creator()())) == TEST_SIZE
def train():
return reader_creator(
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
TRAIN_IMAGE_MD5),
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
TRAIN_LABEL_MD5), 100)
if __name__ == '__main__':
unittest()
def test():
return reader_creator(
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
TEST_IMAGE_MD5),
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
TEST_LABEL_MD5), 100)
import zipfile
from config import download
from common import download
import re
import random
import functools
......
import paddle.v2.dataset.cifar
import unittest
class TestCIFAR(unittest.TestCase):
def check_reader(self, reader):
sum = 0
label = 0
for l in reader():
self.assertEqual(l[0].size, 3072)
if l[1] > label:
label = l[1]
sum += 1
return sum, label
def test_test10(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.test10())
self.assertEqual(instances, 10000)
self.assertEqual(max_label_value, 9)
def test_train10(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.train10())
self.assertEqual(instances, 50000)
self.assertEqual(max_label_value, 9)
def test_test100(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.test100())
self.assertEqual(instances, 10000)
self.assertEqual(max_label_value, 99)
def test_train100(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.train100())
self.assertEqual(instances, 50000)
self.assertEqual(max_label_value, 99)
if __name__ == '__main__':
unittest.main()
import paddle.v2.dataset.common
import unittest
import tempfile
class TestCommon(unittest.TestCase):
def test_md5file(self):
_, temp_path = tempfile.mkstemp()
with open(temp_path, 'w') as f:
f.write("Hello\n")
self.assertEqual('09f7e02f1290be211da707a266f153b3',
paddle.v2.dataset.common.md5file(temp_path))
def test_download(self):
yi_avatar = 'https://avatars0.githubusercontent.com/u/1548775?v=3&s=460'
self.assertEqual(
paddle.v2.dataset.common.DATA_HOME + '/test/1548775?v=3&s=460',
paddle.v2.dataset.common.download(
yi_avatar, 'test', 'f75287202d6622414c706c36c16f8e0d'))
if __name__ == '__main__':
unittest.main()
import paddle.v2.dataset.mnist
import unittest
class TestMNIST(unittest.TestCase):
def check_reader(self, reader):
sum = 0
label = 0
for l in reader():
self.assertEqual(l[0].size, 784)
if l[1] > label:
label = l[1]
sum += 1
return sum, label
def test_train(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.mnist.train())
self.assertEqual(instances, 60000)
self.assertEqual(max_label_value, 9)
def test_test(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.mnist.test())
self.assertEqual(instances, 10000)
self.assertEqual(max_label_value, 9)
if __name__ == '__main__':
unittest.main()
......@@ -72,26 +72,15 @@ import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.default_decorators import \
wrap_bias_attr_default
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.layers import layer_support
import activation
import data_type
__all__ = [
'parse_network', 'data', 'fc', 'conv_shift', 'img_conv', 'img_pool', 'spp',
'maxout', 'img_cmrnorm', 'batch_norm', 'sum_to_one_norm', 'recurrent',
'lstmemory', 'grumemory', 'pool', 'last_seq', 'first_seq', 'concat',
'seq_concat', 'block_expand', 'expand', 'repeat', 'seq_reshape', 'addto',
'linear_comb', 'interpolation', 'bilinear_interp', 'power', 'scaling',
'slope_intercept', 'tensor', 'cos_sim', 'trans', 'max_id', 'sampling_id',
'pad', 'classification_cost', 'cross_entropy_cost',
'cross_entropy_with_selfnorm_cost', 'regression_cost',
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
'sum_cost', 'huber_cost', 'crf', 'crf_decoding', 'ctc', 'warp_ctc', 'nce',
'hsigmoid', 'eos', 'memory', 'embedding', 'recurrent_group'
]
__all__ = ['parse_network', 'data']
__projection_names__ = filter(lambda x: x.endswith('_projection'),
dir(conf_helps))
......@@ -395,85 +384,51 @@ ExpandLevel = conf_helps.layers.ExpandLevel
recurrent_group = RecurrentGroupV2
memory = MemoryV2
layer_list = [
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
['fc', 'fc_layer', ['input']],
['embedding', 'embedding_layer', ['input']],
# conv layers
['conv_shift', 'conv_shift_layer', ['a', 'b']],
['img_conv', 'img_conv_layer', ['input']],
# image pooling layers
['img_pool', 'img_pool_layer', ['input']],
['spp', 'spp_layer', ['input']],
['maxout', 'maxout_layer', ['input']],
# norm layers
['img_cmrnorm', 'img_cmrnorm_layer', ['input']],
['batch_norm', 'batch_norm_layer', ['input']],
['sum_to_one_norm', 'sum_to_one_norm_layer', ['input']],
# recurrent layers
['recurrent', 'recurrent_layer', ['input']],
['lstmemory', 'lstmemory', ['input']],
['grumemory', 'grumemory', ['input']],
# aggregate layers
['pool', 'pooling_layer', ['input']],
['last_seq', 'last_seq', ['input']],
['first_seq', 'first_seq', ['input']],
['concat', 'concat_layer', ['input']],
['seq_concat', 'seq_concat_layer', ['a', 'b']],
# reshaping layers
['block_expand', 'block_expand_layer', ['input']],
['expand', 'expand_layer', ['input', 'expand_as']],
['repeat', 'repeat_layer', ['input']],
['rotate', 'rotate_layer', ['input']],
['seq_reshape', 'seq_reshape_layer', ['input']],
# math layers
['addto', 'addto_layer', ['input']],
['linear_comb', 'linear_comb_layer', ['weights', 'vectors']],
['interpolation', 'interpolation_layer', ['input', 'weight']],
['bilinear_interp', 'bilinear_interp_layer', ['input']],
['power', 'power_layer', ['input', 'weight']],
['scaling', 'scaling_layer', ['input', 'weight']],
['slope_intercept', 'slope_intercept_layer', ['input']],
['tensor', 'tensor_layer', ['a', 'b']],
['cos_sim', 'cos_sim', ['a', 'b']],
['trans', 'trans_layer', ['input']],
# sampling layers
['max_id', 'maxid_layer', ['input']],
['sampling_id', 'sampling_id_layer', ['input']],
# slicing and joining layers
['pad', 'pad_layer', ['input']],
# cost layers
[
'classification_cost', 'classification_cost',
['input', 'label', 'weight']
],
['regression_cost', 'regression_cost', ['input', 'label', 'weight']],
['cross_entropy_cost', 'cross_entropy', ['input', 'label']],
[
'cross_entropy_with_selfnorm_cost', 'cross_entropy_with_selfnorm',
['input', 'label']
],
[
'multi_binary_label_cross_entropy_cost',
'multi_binary_label_cross_entropy', ['input', 'label']
],
['rank_cost', 'rank_cost', ['left', 'right', 'label', 'weight']],
['lambda_cost', 'lambda_cost', ['input', 'score']],
['sum_cost', 'sum_cost', ['input']],
['huber_cost', 'huber_cost', ['input', 'label']],
['crf', 'crf_layer', ['input', 'label']],
['crf_decoding', 'crf_decoding_layer', ['input']],
['ctc', 'ctc_layer', ['input', 'label']],
['warp_ctc', 'warp_ctc_layer', ['input', 'label']],
['nce', 'nce_layer', ['input', 'label']],
['hsigmoid', 'hsigmoid', ['input', 'label']],
# check layers
['eos', 'eos_layer', ['input']],
['gru_step_layer', 'gru_step_layer', ['input', 'output_mem']]
]
for l in layer_list:
globals()[l[0]] = __convert_to_v2__(l[1], l[2])
def __layer_name_mapping__(inname):
if inname in ['data_layer', 'memory', 'mixed_layer']:
# Do Not handle these layers
return
elif inname == 'maxid_layer':
return 'max_id'
elif inname.endswith('memory') or inname.endswith(
'_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
return inname
elif inname in [
'cross_entropy', 'multi_binary_label_cross_entropy',
'cross_entropy_with_selfnorm'
]:
return inname + "_cost"
elif inname.endswith('_cost'):
return inname
elif inname.endswith("_layer"):
return inname[:-len("_layer")]
def __layer_name_mapping_parent_names__(inname):
all_args = getattr(conf_helps, inname).argspec.args
return filter(
lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
'weights', 'vectors', 'weight', 'score', 'left', 'right'],
all_args)
def __convert_layer__(_new_name_, _old_name_, _parent_names_):
global __all__
__all__.append(_new_name_)
globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
for each_layer_name in dir(conf_helps):
new_name = __layer_name_mapping__(each_layer_name)
if new_name is not None:
parent_names = __layer_name_mapping_parent_names__(each_layer_name)
assert len(parent_names) != 0, each_layer_name
__convert_layer__(new_name, each_layer_name, parent_names)
del parent_names
del new_name
del each_layer_name
# convert projection
for prj in __projection_names__:
......
......@@ -14,7 +14,7 @@
__all__ = [
'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
'ComposeNotAligned'
'ComposeNotAligned', 'batched'
]
from Queue import Queue
......@@ -191,3 +191,25 @@ def buffered(reader, size):
e = q.get()
return data_reader
def batched(reader, batch_size):
"""
Create a batched reader.
:param reader: the data reader to read from.
:param batch_size: batch_size
:return: the batched reader.
"""
def batched_reader():
r = reader()
batch = []
for instance in r:
batch.append(instance)
if len(batch) == batch_size:
yield batch
batch = []
if batch:
yield batch
return batched_reader
add_test(NAME reader_tests
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/reader/tests/run_tests.sh
${PYTHON_EXECUTABLE})
......@@ -11,17 +11,19 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import paddle.reader.creator
import numpy as np
import os
import paddle.v2.reader.creator
class TestNumpyArray(unittest.TestCase):
def test_numpy_array(self):
l = [[1, 2, 3], [4, 5, 6]]
x = np.array(l, np.int32)
reader = paddle.reader.creator.np_array(x)
reader = paddle.v2.reader.creator.np_array(x)
for idx, e in enumerate(reader()):
self.assertItemsEqual(e, l[idx])
......@@ -29,7 +31,7 @@ class TestNumpyArray(unittest.TestCase):
class TestTextFile(unittest.TestCase):
def test_text_file(self):
path = os.path.join(os.path.dirname(__file__), "test_data_creator.txt")
reader = paddle.reader.creator.text_file(path)
reader = paddle.v2.reader.creator.text_file(path)
for idx, e in enumerate(reader()):
self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1))
......
......@@ -11,9 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.reader
import time
import unittest
import paddle.v2.reader
def reader_creator_10(dur):
......@@ -37,7 +38,7 @@ class TestMap(unittest.TestCase):
yield "h"
yield "i"
r = paddle.reader.map_readers(tokenize, read)
r = paddle.v2.reader.map_readers(tokenize, read)
for i, e in enumerate(r()):
self.assertEqual(e, i)
......@@ -45,7 +46,7 @@ class TestMap(unittest.TestCase):
class TestBuffered(unittest.TestCase):
def test_read(self):
for size in range(20):
b = paddle.reader.buffered(reader_creator_10(0), size)
b = paddle.v2.reader.buffered(reader_creator_10(0), size)
c = 0
for i in b():
self.assertEqual(i, c)
......@@ -54,7 +55,7 @@ class TestBuffered(unittest.TestCase):
def test_buffering(self):
# read have 30ms delay.
b = paddle.reader.buffered(reader_creator_10(0.03), 10)
b = paddle.v2.reader.buffered(reader_creator_10(0.03), 10)
last_time = time.time()
for idx, i in enumerate(b()):
elapsed_time = time.time() - last_time
......@@ -68,17 +69,17 @@ class TestBuffered(unittest.TestCase):
class TestCompose(unittest.TestCase):
def test_compse(self):
reader = paddle.reader.compose(
reader = paddle.v2.reader.compose(
reader_creator_10(0), reader_creator_10(0))
for idx, e in enumerate(reader()):
self.assertEqual(e, (idx, idx))
def test_compose_not_aligned(self):
total = 0
reader = paddle.reader.compose(
paddle.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader = paddle.v2.reader.compose(
paddle.v2.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader_creator_10(0))
with self.assertRaises(paddle.reader.ComposeNotAligned):
with self.assertRaises(paddle.v2.reader.ComposeNotAligned):
for e in reader():
total += 1
# expecting 10, not 20
......@@ -86,8 +87,8 @@ class TestCompose(unittest.TestCase):
def test_compose_not_aligned_no_check(self):
total = 0
reader = paddle.reader.compose(
paddle.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader = paddle.v2.reader.compose(
paddle.v2.reader.chain(reader_creator_10(0), reader_creator_10(0)),
reader_creator_10(0),
check_alignment=False)
for e in reader():
......@@ -98,7 +99,7 @@ class TestCompose(unittest.TestCase):
class TestChain(unittest.TestCase):
def test_chain(self):
c = paddle.reader.chain(reader_creator_10(0), reader_creator_10(0))
c = paddle.v2.reader.chain(reader_creator_10(0), reader_creator_10(0))
idx = 0
for e in c():
self.assertEqual(e, idx % 10)
......@@ -111,7 +112,7 @@ class TestShuffle(unittest.TestCase):
case = [(0, True), (1, True), (10, False), (100, False)]
a = reader_creator_10(0)
for size, checkEq in case:
s = paddle.reader.shuffle(a, size)
s = paddle.v2.reader.shuffle(a, size)
total = 0
for idx, e in enumerate(s()):
if checkEq:
......
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pushd `dirname $0` > /dev/null
SCRIPTPATH=$PWD
popd > /dev/null
cd $SCRIPTPATH
$1 -m pip install ../../../../../paddle/dist/*.whl
test_list="creator_test.py decorator_test.py"
export PYTHONPATH=$PWD/../../../../../python/
for fn in $test_list
do
echo "test $fn"
$1 $fn
if [ $? -ne 0 ]; then
exit 1
fi
done
......@@ -66,7 +66,7 @@ class ImageLayerTest(unittest.TestCase):
class AggregateLayerTest(unittest.TestCase):
def test_aggregate_layer(self):
pool = layer.pool(
pool = layer.pooling(
input=pixel,
pooling_type=pooling.Avg(),
agg_level=layer.AggregateLevel.EACH_SEQUENCE)
......
......@@ -27,19 +27,13 @@ class ITrainer(object):
The interface of Trainer. The only exposed method is `train`.
"""
def train(self,
train_data_reader,
cost,
parameters,
test_data_reader=None,
event_handler=None):
def train(self, reader, topology, parameters, event_handler=None):
"""
train method.
:param train_data_reader:
:param cost:
:param reader:
:param topology:
:param parameters:
:param test_data_reader:
:param event_handler:
:return:
"""
......@@ -61,26 +55,22 @@ class SGD(ITrainer):
self.__optimizer__ = update_equation
def train(self,
train_data_reader,
reader,
cost,
parameters,
num_passes=1,
test_data_reader=None,
event_handler=None,
batch_size=32,
reader_dict=None):
"""
Training method. Will train num_passes of input data.
:param train_data_reader:
:param cost: cost layers, to be optimized.
:param reader:
:param topology: Network Topology, use one or more Layers to represent it.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param test_data_reader:
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param batch_size: Not important, will be removed after data refactor.
:return:
"""
if event_handler is None:
......@@ -112,9 +102,9 @@ class SGD(ITrainer):
event_handler(v2_event.BeginPass(pass_id))
pass_evaluator.start()
updater.startPass()
for batch_id, data_batch in enumerate(
__data_reader_to_batch__(train_data_reader, batch_size,
topology)):
for batch_id, data_batch in enumerate(reader()):
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(feeder(data_batch), out_args, pass_type)
batch_evaluator.start()
event_handler(
v2_event.BeginIteration(
......@@ -144,56 +134,19 @@ class SGD(ITrainer):
gm.finish()
def __data_reader_to_batch__(reader, batch_size, topology):
"""
This function is not important, and will be removed when data refactored.
"""
def input_reorder(func):
for item in func():
retv = []
for __layer_name__ in topology.proto().input_layer_names:
retv.append(item[__layer_name__])
yield retv
return __generator_to_batch__(input_reorder(reader), batch_size=batch_size)
def __generator_to_batch__(generator, batch_size):
"""
This function is not important, and will be removed when data refactored.
"""
ret_val = list()
for each_item in generator:
ret_val.append(each_item)
if len(ret_val) == batch_size:
yield ret_val
ret_val = list()
if len(ret_val) != 0:
yield ret_val
def __check_train_args__(train_data_reader, topology, parameters,
test_data_reader, event_handler, **kwargs):
def __check_train_args__(reader, topology, parameters, event_handler, **kwargs):
"""
Check train function's argument types
"""
if not callable(train_data_reader) or not isinstance(train_data_reader(),
collections.Iterator):
raise ValueError('train_data_reader should be a function, '
'which can return a iterator')
if test_data_reader is not None:
if not callable(test_data_reader) or not isinstance(
test_data_reader(), collections.Iterator):
raise ValueError('test_data_reader should be a function, which can '
'return a iterator')
if not callable(reader) or not isinstance(reader(), collections.Iterator):
raise TypeError('train_data_reader should be a function, '
'which can return a iterator')
if not isinstance(topology, Topology):
raise ValueError('topology should be a model config')
raise TypeError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
raise ValueError('parameters should be a parameter pool')
raise TypeError('parameters should be a parameter pool')
if not callable(event_handler):
raise ValueError('event handler should be a function')
raise TypeError('event handler should be a function')
......@@ -5,7 +5,9 @@ packages=['paddle',
'paddle.trainer',
'paddle.trainer_config_helpers',
'paddle.utils',
'paddle.v2']
'paddle.v2',
'paddle.v2.dataset',
'paddle.v2.reader']
setup(name='paddle',
version='${PADDLE_VERSION}',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册