提交 e7b3a5f1 编写于 作者: Y Yu Yang

Follow comments

上级 a125ef1a
......@@ -21,7 +21,7 @@ import data_type
import topology
import data_feeder
import networks
import evaluators
import evaluator
from . import dataset
from . import reader
from . import plot
......@@ -36,7 +36,7 @@ import plot
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology', 'networks', 'infer', 'plot', 'evaluators'
'topology', 'networks', 'infer', 'plot', 'evaluator'
]
......
......@@ -20,21 +20,28 @@ __all__ = []
def initialize():
def convert_to_new_name(nm):
return nm[:-len("_evaluator")]
for __ev_name__ in filter(lambda x: x.endswith('_evaluator'), evs.__all__):
__ev__ = getattr(evs, __ev_name__)
if hasattr(__ev__, 'argspec'):
argspec = __ev__.argspec
else:
argspec = inspect.getargspec(__ev__)
parent_names = filter(lambda x: x in ['input', 'label'], argspec.args)
parent_names = filter(lambda x: x in ['input', 'label', 'weight'],
argspec.args)
v2_ev = __convert_to_v2__(
__ev_name__,
parent_names=parent_names,
is_default_name='name' in argspec.args,
attach_parent=True)
globals()[__ev_name__] = v2_ev
globals()[__ev_name__].__name__ = __ev_name__
__all__.append(__ev_name__)
__new_name__ = convert_to_new_name(__ev_name__)
globals()[__new_name__] = v2_ev
globals()[__new_name__].__name__ = __new_name__
__all__.append(__new_name__)
initialize()
......@@ -19,7 +19,7 @@ import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
import paddle.v2.pooling as pooling
import paddle.v2.networks as networks
import paddle.v2.evaluators as evaluators
import paddle.v2.evaluator as evaluator
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10))
......@@ -273,7 +273,7 @@ class EvaluatorTest(unittest.TestCase):
lbl = layer.data(name='label', type=data_type.integer_value(10))
cost = layer.cross_entropy_cost(input=output, label=lbl)
evaluators.classification_error_evaluator(input=output, label=lbl)
evaluator.classification_error(input=output, label=lbl)
print layer.parse_network(cost)
print layer.parse_network(output)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册