Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e61f48c1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e61f48c1
编写于
7月 29, 2022
作者:
H
houj04
提交者:
GitHub
7月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] add sampling_id op, add top_k op, update xdnn api. test=kunlun (#44704)
上级
72b65d6b
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
212 addition
and
185 deletion
+212
-185
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/framework/tensor_util.h
paddle/fluid/framework/tensor_util.h
+10
-0
paddle/fluid/operators/detection/generate_proposals_v2_op_xpu.cc
...fluid/operators/detection/generate_proposals_v2_op_xpu.cc
+8
-14
paddle/fluid/operators/one_hot_op_xpu.cc
paddle/fluid/operators/one_hot_op_xpu.cc
+9
-8
paddle/fluid/operators/sampling_id_op_xpu.cc
paddle/fluid/operators/sampling_id_op_xpu.cc
+20
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+6
-0
python/paddle/fluid/tests/unittests/xpu/test_one_hot_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_one_hot_op_xpu.py
+106
-161
python/paddle/fluid/tests/unittests/xpu/test_sampling_id_op_xpu.py
...ddle/fluid/tests/unittests/xpu/test_sampling_id_op_xpu.py
+51
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
e61f48c1
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022072
7
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022072
8
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
@@ -19,7 +19,7 @@ endif()
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022072
7
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022072
8
"
)
else
()
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/framework/tensor_util.h
浏览文件 @
e61f48c1
...
...
@@ -302,6 +302,11 @@ void TensorFromVector(const std::vector<T>& src,
size
,
reinterpret_cast
<
const
platform
::
CustomDeviceContext
&>
(
ctx
).
stream
());
}
#endif
#ifdef PADDLE_WITH_XPU
else
if
(
platform
::
is_xpu_place
(
dst_place
))
{
// NOLINT
memory
::
Copy
(
dst_place
,
dst_ptr
,
src_place
,
src_ptr
,
size
);
}
#endif
else
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
...
...
@@ -381,6 +386,11 @@ inline void TensorFromVector(const std::vector<bool>& src,
reinterpret_cast
<
const
platform
::
CustomDeviceContext
&>
(
ctx
).
stream
();
memory
::
Copy
(
dst_place
,
dst_ptr
,
src_place
,
src_ptr
,
size
,
stream
);
}
#endif
#ifdef PADDLE_WITH_XPU
else
if
(
platform
::
is_xpu_place
(
dst_place
))
{
// NOLINT
memory
::
Copy
(
dst_place
,
dst_ptr
,
src_place
,
src_ptr
,
size
);
}
#endif
else
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
...
...
paddle/fluid/operators/detection/generate_proposals_v2_op_xpu.cc
浏览文件 @
e61f48c1
...
...
@@ -219,20 +219,14 @@ static std::pair<Tensor, Tensor> ProposalForOneImage(
// 4. nms
int
nms_keep_num
=
0
;
r
=
xpu
::
nms
<
T
>
(
dev_ctx
.
x_context
(),
proposals_filter
.
data
<
T
>
(),
nullptr
,
keep_index
.
data
<
int
>
(),
1
,
1
,
keep_num
,
-
1
,
nms_thresh
,
-
1
,
0
,
&
nms_keep_num
,
pixel_offset
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nms"
);
r
=
xpu
::
sorted_nms
<
T
>
(
dev_ctx
.
x_context
(),
proposals_filter
.
data
<
T
>
(),
keep_index
.
data
<
int
>
(),
nms_keep_num
,
keep_num
,
nms_thresh
,
pixel_offset
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"sorted_nms"
);
if
(
post_nms_top_n
>
0
&&
post_nms_top_n
<
nms_keep_num
)
{
keep_index
.
Resize
({
post_nms_top_n
});
}
else
{
...
...
paddle/fluid/operators/one_hot_op_xpu.cc
浏览文件 @
e61f48c1
...
...
@@ -17,6 +17,7 @@
#include <vector>
#include "paddle/fluid/operators/one_hot_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,9 +29,13 @@ template <typename DeviceContext, typename T>
class
OneHotXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
const
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// get depth from attr
int
depth
=
context
.
Attr
<
int
>
(
"depth"
);
// get depth from input tensor
if
(
context
.
HasInput
(
"depth_tensor"
))
{
auto
*
depth_tensor
=
context
.
Input
<
Tensor
>
(
"depth_tensor"
);
auto
*
depth_data
=
depth_tensor
->
data
<
int32_t
>
();
...
...
@@ -50,18 +55,14 @@ class OneHotXPUKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
len
=
in
->
numel
();
// int one_hot(Context* ctx, const T* x, float* y, int len, int depth, float
// on_value = 1.0f, float off_value = 0.0f);
int
ret
=
xpu
::
one_hot
<
T
>
(
dev_ctx
.
x_context
(),
in
->
data
<
T
>
(),
out
->
mutable_data
<
float
>
(
context
.
GetPlace
()),
len
,
depth
);
PADDLE_ENFORCE_EQ
(
ret
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU one_hot kernel return wrong value[%d %s]"
,
ret
,
XPUAPIErrorMsg
[
ret
]));
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"one_hot"
);
}
};
...
...
paddle/fluid/operators/sampling_id_op_xpu.cc
0 → 100644
浏览文件 @
e61f48c1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sampling_id_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
sampling_id
,
paddle
::
operators
::
SamplingIdKernel
<
float
>
,
paddle
::
operators
::
SamplingIdKernel
<
double
>
);
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
e61f48c1
...
...
@@ -322,6 +322,9 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"one_hot"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})},
{
"one_hot_v2"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})},
...
...
@@ -393,6 +396,9 @@ XPUOpMap& get_kl2_ops() {
{
"scatter"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"sampling_id"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
())})},
{
"sgd"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/test_one_hot_op_xpu.py
浏览文件 @
e61f48c1
# Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -13,172 +13,117 @@
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
time
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
"""
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
'core is not compiled with XPU')
class TestOneHotOp(XPUOpTest):
def setUp(self):
self.use_xpu = True
self.op_type = 'one_hot'
depth = 10
depth_np = np.array(10).astype('int32')
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
'core is not compiled with XPU')
class TestOneHotOp_attr(XPUOpTest):
def setUp(self):
self.op_type = 'one_hot'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
'core is not compiled with XPU')
class TestOneHotOp_default_dtype(XPUOpTest):
def setUp(self):
self.op_type = 'one_hot'
depth = 10
depth_np = np.array(10).astype('int32')
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
'core is not compiled with XPU')
class TestOneHotOp_default_dtype_attr(XPUOpTest):
def setUp(self):
self.op_type = 'one_hot'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
'core is not compiled with XPU')
class TestOneHotOp_out_of_range(XPUOpTest):
def setUp(self):
self.op_type = 'one_hot'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
'core is not compiled with XPU')
class TestOneHotOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# the input must be Variable
in_w = np.random.random((4, 1)).astype('int32')
self.assertRaises(TypeError, fluid.layers.one_hot, in_w)
# the input must be int32 or int 64
in_w2 = fluid.layers.data(
name='in_w2',
shape=[4, 1],
append_batch_size=False,
dtype='float32')
self.assertRaises(TypeError, fluid.layers.one_hot, in_w2)
# the depth must be int, long or Variable
in_r = fluid.layers.data(
name='in_r',
shape=[4, 1],
append_batch_size=False,
dtype='int32')
depth_w = np.array([4])
self.assertRaises(TypeError, fluid.layers.one_hot, in_r, 4.1)
self.assertRaises(TypeError, fluid.layers.one_hot, in_r, depth_w)
"""
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
class
XPUTestOneHotOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'one_hot'
self
.
use_dynamic_create_class
=
False
class
TestXPUOneHotOP
(
XPUOpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_dtype
()
self
.
op_type
=
'one_hot'
self
.
set_data
()
self
.
set_input
()
def
set_data
(
self
):
self
.
depth
=
10
self
.
depth_np
=
np
.
array
(
10
).
astype
(
'int32'
)
self
.
x_lod
=
[[
4
,
1
,
3
,
3
]]
self
.
x
=
[
np
.
random
.
randint
(
0
,
self
.
depth
-
1
)
for
i
in
range
(
sum
(
self
.
x_lod
[
0
]))
]
self
.
x
=
np
.
array
(
self
.
x
).
astype
(
self
.
dtype
).
reshape
(
[
sum
(
self
.
x_lod
[
0
]),
1
])
self
.
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
self
.
x
.
shape
[:
-
1
]),
self
.
depth
)).
astype
(
'float32'
)
for
i
in
range
(
np
.
product
(
self
.
x
.
shape
)):
self
.
out
[
i
,
self
.
x
[
i
]]
=
1.0
self
.
outputs
=
{
'Out'
:
(
self
.
out
,
self
.
x_lod
)}
def
set_input
(
self
):
self
.
inputs
=
{
'X'
:
(
self
.
x
,
self
.
x_lod
),
'depth_tensor'
:
self
.
depth_np
}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
class
TestXPUOneHotOP_attr
(
TestXPUOneHotOP
):
def
set_input
(
self
):
self
.
inputs
=
{
'X'
:
(
self
.
x
,
self
.
x_lod
)}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
),
'depth'
:
self
.
depth
}
class
TestXPUOneHotOP_default_dtype
(
TestXPUOneHotOP
):
def
set_input
(
self
):
self
.
inputs
=
{
'X'
:
(
self
.
x
,
self
.
x_lod
),
'depth_tensor'
:
self
.
depth_np
}
self
.
attrs
=
{}
class
TestXPUOneHotOP_default_dtype_attr
(
TestXPUOneHotOP
):
def
set_input
(
self
):
self
.
inputs
=
{
'X'
:
(
self
.
x
,
self
.
x_lod
)}
self
.
attrs
=
{
'depth'
:
self
.
depth
}
class
TestXPUOneHotOP_out_of_range
(
TestXPUOneHotOP
):
def
set_data
(
self
):
self
.
depth
=
10
self
.
x_lod
=
[[
4
,
1
,
3
,
3
]]
self
.
x
=
[
np
.
random
.
choice
([
-
1
,
self
.
depth
])
for
i
in
range
(
sum
(
self
.
x_lod
[
0
]))
]
self
.
x
=
np
.
array
(
self
.
x
).
astype
(
self
.
dtype
).
reshape
(
[
sum
(
self
.
x_lod
[
0
]),
1
])
self
.
out
=
np
.
zeros
(
shape
=
(
np
.
product
(
self
.
x
.
shape
[:
-
1
]),
self
.
depth
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
(
self
.
out
,
self
.
x_lod
)}
def
set_input
(
self
):
self
.
inputs
=
{
'X'
:
(
self
.
x
,
self
.
x_lod
)}
self
.
attrs
=
{
'depth'
:
self
.
depth
,
'allow_out_of_range'
:
True
}
support_types
=
get_xpu_op_support_types
(
'one_hot'
)
print
(
"support_types: %s"
%
str
(
support_types
))
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestOneHotOP
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_sampling_id_op_xpu.py
0 → 100644
浏览文件 @
e61f48c1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.op
import
Operator
import
paddle
class
TestSamplingIdShape
(
unittest
.
TestCase
):
def
test_shape
(
self
):
paddle
.
enable_static
()
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
3
],
dtype
=
'float32'
)
output
=
fluid
.
layers
.
sampling_id
(
x
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed
=
{
'x'
:
np
.
array
([[
0.2
,
0.3
,
0.5
],
[
0.2
,
0.3
,
0.4
]],
dtype
=
'float32'
)
}
output_np
=
exe
.
run
(
feed
=
feed
,
fetch_list
=
[
output
])[
0
]
self
.
assertEqual
(
output
.
shape
[
0
],
-
1
)
self
.
assertEqual
(
len
(
output
.
shape
),
1
)
self
.
assertEqual
(
output_np
.
shape
[
0
],
2
)
self
.
assertEqual
(
len
(
output_np
.
shape
),
1
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录