未验证 提交 e57a88b3 编写于 作者: Z zhulei 提交者: GitHub

[NPU] Add label_smooth_op (#34828)

* [NPU] Add label_smooth_op

* [NPU] Add label_smooth_op
上级 67ed7e12
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/label_smooth_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T>
void LabelSmoothMuls(const platform::Place& place, const aclrtStream& stream,
const Tensor* in, float val, Tensor* out) {
out->mutable_data<T>(in->dims(), place);
const auto& runner = NpuOpRunner("Muls", {*in}, {*out}, {{"value", val}});
runner.Run(stream);
}
template <typename T>
void LabelSmoothAdds(const platform::Place& place, const aclrtStream& stream,
const Tensor* in, float val, Tensor* out) {
out->mutable_data<T>(in->dims(), place);
const auto& runner = NpuOpRunner("Adds", {*in}, {*out}, {{"value", val}});
runner.Run(stream);
}
template <typename T>
void LabelSmoothAddBroadCast(const platform::Place& place,
const aclrtStream& stream, const Tensor* in1,
const Tensor* in2, Tensor* out) {
out->mutable_data<T>(place);
const auto& runner = NpuOpRunner("AddV2", {*in1, *in2}, {*out}, {});
runner.Run(stream);
}
template <typename T>
class LabelSmoothNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* out_t = ctx.Output<LoDTensor>("Out");
auto* in_t = ctx.Input<LoDTensor>("X");
auto* dist_t = ctx.Input<Tensor>("PriorDist");
auto epsilon = ctx.Attr<float>("epsilon");
auto label_dim = in_t->dims()[in_t->dims().size() - 1];
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (dist_t) {
Tensor tmp;
Tensor dist;
Tensor tmp2;
LabelSmoothMuls<T>(place, stream, in_t, (1 - epsilon), &tmp);
LabelSmoothMuls<T>(place, stream, dist_t, epsilon, &tmp2);
tmp2.Resize({1, label_dim});
LabelSmoothAddBroadCast<T>(place, stream, &tmp, &tmp2, out_t);
} else {
Tensor tmp;
LabelSmoothMuls<T>(place, stream, in_t, (1 - epsilon), &tmp);
LabelSmoothAdds<T>(place, stream, &tmp, (epsilon / label_dim), out_t);
}
}
};
template <typename T>
class LabelSmoothGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto epsilon = ctx.Attr<float>("epsilon");
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
LabelSmoothMuls<T>(place, stream, d_out_t, 1 - epsilon, d_in_t);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(label_smooth, ops::LabelSmoothNPUKernel<float>,
ops::LabelSmoothNPUKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(label_smooth_grad, ops::LabelSmoothGradNPUKernel<float>,
ops::LabelSmoothGradNPUKernel<plat::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestLabelSmoothOp(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "label_smooth"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
self.set_inputs()
self.set_attrs()
self.set_outputs()
def calc_out(self, label, epsilon, dist=None):
label_dim = label.shape[-1]
y = (1 - epsilon) * label
if dist is not None:
y += epsilon * dist
else:
y += epsilon / label_dim
return y.astype(self.dtype)
def set_inputs(self):
batch_size, label_dim = 10, 12
x = np.zeros((batch_size, label_dim)).astype(self.dtype)
nonzero_index = np.random.randint(label_dim, size=(batch_size))
x[np.arange(batch_size), nonzero_index] = 1
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
def set_attrs(self):
epsilon = 0.1
self.attrs = {"epsilon": epsilon}
def set_outputs(self):
dist = None if 'PriorDist' not in self.inputs else self.inputs[
'PriorDist']
out = self.calc_out(self.inputs['X'], self.attrs['epsilon'], dist)
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestLabelSmoothOpWithPriorDist(TestLabelSmoothOp):
def set_inputs(self):
super(TestLabelSmoothOpWithPriorDist, self).set_inputs()
label_dim = self.inputs['X'].shape[-1]
dist = np.random.random((1, label_dim)).astype(self.dtype)
self.inputs['PriorDist'] = dist
class TestLabelSmoothOp3D(TestLabelSmoothOp):
def set_inputs(self):
super(TestLabelSmoothOp3D, self).set_inputs()
self.inputs['X'].reshape([2, -1, self.inputs['X'].shape[-1]])
class TestLabelSmoothOpWithPriorDist3D(TestLabelSmoothOpWithPriorDist):
def set_inputs(self):
super(TestLabelSmoothOpWithPriorDist3D, self).set_inputs()
self.inputs['X'].reshape([2, -1, self.inputs['X'].shape[-1]])
class TestLabelSmoothOpFP16(TestLabelSmoothOp):
def init_dtype(self):
self.dtype = np.float16
class TestLabelSmoothOpWithPriorDistFP16(TestLabelSmoothOpWithPriorDist):
def init_dtype(self):
self.dtype = np.float16
class TestLabelSmoothOp3DFP16(TestLabelSmoothOp3D):
def init_dtype(self):
self.dtype = np.float16
class TestLabelSmoothOpWithPriorDist3DFP16(TestLabelSmoothOpWithPriorDist3D):
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册