Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e533a4b4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e533a4b4
编写于
6月 06, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into overlap_memcpy_with_dist
上级
cb386153
c36dd3b3
变更
21
隐藏空白更改
内联
并排
Showing
21 changed file
with
244 addition
and
81 deletion
+244
-81
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-0
paddle/fluid/framework/details/execution_strategy.h
paddle/fluid/framework/details/execution_strategy.h
+1
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+76
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h
...uid/framework/details/scope_buffered_ssa_graph_executor.h
+53
-0
paddle/fluid/framework/details/ssa_graph_executor.cc
paddle/fluid/framework/details/ssa_graph_executor.cc
+0
-4
paddle/fluid/framework/details/ssa_graph_executor.h
paddle/fluid/framework/details/ssa_graph_executor.h
+1
-5
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+4
-2
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+1
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+16
-43
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+0
-1
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+0
-3
paddle/fluid/platform/dynload/cublas.h
paddle/fluid/platform/dynload/cublas.h
+1
-1
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+1
-1
paddle/fluid/platform/dynload/cupti.h
paddle/fluid/platform/dynload/cupti.h
+1
-1
paddle/fluid/platform/dynload/curand.h
paddle/fluid/platform/dynload/curand.h
+1
-1
paddle/fluid/platform/dynload/nccl.h
paddle/fluid/platform/dynload/nccl.h
+1
-1
paddle/fluid/platform/dynload/tensorrt.h
paddle/fluid/platform/dynload/tensorrt.h
+1
-1
paddle/fluid/platform/dynload/warpctc.h
paddle/fluid/platform/dynload/warpctc.h
+1
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+8
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+75
-15
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
e533a4b4
...
...
@@ -87,7 +87,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto glog lod_rank_table feed_fetch_method
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor
scope_buffered_ssa_graph_executor
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
e533a4b4
...
...
@@ -36,5 +36,6 @@ cc_test(broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_ha
device_context broadcast_op_handle
)
cc_test
(
gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context gather_op_handle
)
cc_library
(
scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_executor.cc DEPS ssa_graph_executor
)
#cc_test(reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
# device_context reduce_op_handle )
paddle/fluid/framework/details/execution_strategy.h
浏览文件 @
e533a4b4
...
...
@@ -22,6 +22,7 @@ struct ExecutionStrategy {
size_t
num_threads_
{
0
};
bool
use_event_
{
true
};
bool
allow_op_delay_
{
false
};
size_t
num_iteration_per_drop_scope_
{
100
};
};
}
// namespace details
...
...
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
0 → 100644
浏览文件 @
e533a4b4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
ScopeBufferedSSAGraphExecutor
::
ScopeBufferedSSAGraphExecutor
(
ExecutionStrategy
strategy
,
std
::
vector
<
Scope
*>
local_scopes
,
std
::
vector
<
VariableInfo
>
var_infos
,
std
::
vector
<
platform
::
Place
>
places
,
std
::
unique_ptr
<
SSAGraphExecutor
>
&&
underlying_executor
)
:
strategy_
(
std
::
move
(
strategy
)),
underlying_executor_
(
std
::
move
(
underlying_executor
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
var_infos_
(
std
::
move
(
var_infos
)),
places_
(
std
::
move
(
places
))
{}
FeedFetchList
ScopeBufferedSSAGraphExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
if
(
drop_scope_counter_
==
0
)
{
// Create local scopes.
for
(
auto
it
=
local_scopes_
.
rbegin
();
it
!=
local_scopes_
.
rend
();
++
it
)
{
auto
&
scope
=
*
it
;
Scope
&
local_scope
=
scope
->
NewScope
();
*
scope
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
for
(
auto
&
info
:
var_infos_
)
{
if
(
scope
->
FindVar
(
info
.
name_
)
!=
nullptr
)
{
continue
;
}
if
(
info
.
persistable_
)
{
// Persistable
InitializeVariable
(
scope
->
Var
(
info
.
name_
),
info
.
type_
);
}
else
{
InitializeVariable
(
local_scope
.
Var
(
info
.
name_
),
info
.
type_
);
}
}
}
}
auto
fetch_data
=
underlying_executor_
->
Run
(
fetch_tensors
);
drop_scope_counter_
+=
1
;
if
(
!
fetch_tensors
.
empty
()
||
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
drop_scope_counter_
=
0
;
// Wait All computational streams
for
(
auto
p
:
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
for
(
auto
&
scope
:
local_scopes_
)
{
auto
&
local_scope
=
*
scope
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
();
scope
->
DeleteScope
(
local_scope
);
}
}
return
fetch_data
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h
0 → 100644
浏览文件 @
e533a4b4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
VariableInfo
{
std
::
string
name_
;
proto
::
VarType
::
Type
type_
;
bool
persistable_
;
};
class
ScopeBufferedSSAGraphExecutor
:
public
SSAGraphExecutor
{
public:
ScopeBufferedSSAGraphExecutor
(
ExecutionStrategy
strategy
,
std
::
vector
<
Scope
*>
local_scopes
,
std
::
vector
<
VariableInfo
>
var_infos
,
std
::
vector
<
platform
::
Place
>
places
,
std
::
unique_ptr
<
SSAGraphExecutor
>&&
underlying_executor
);
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>&
fetch_tensors
)
override
;
private:
size_t
drop_scope_counter_
{
0
};
ExecutionStrategy
strategy_
;
std
::
unique_ptr
<
SSAGraphExecutor
>
underlying_executor_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
VariableInfo
>
var_infos_
;
std
::
vector
<
platform
::
Place
>
places_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/ssa_graph_executor.cc
浏览文件 @
e533a4b4
...
...
@@ -17,10 +17,6 @@
namespace
paddle
{
namespace
framework
{
namespace
details
{
SSAGraphExecutor
::
SSAGraphExecutor
(
std
::
unique_ptr
<
SSAGraph
>
&&
graph
)
:
graph_
(
std
::
move
(
graph
))
{}
SSAGraphExecutor
::~
SSAGraphExecutor
()
{}
}
// namespace details
...
...
paddle/fluid/framework/details/ssa_graph_executor.h
浏览文件 @
e533a4b4
...
...
@@ -28,15 +28,11 @@ class SSAGraphExecutor {
DISABLE_COPY_AND_ASSIGN
(
SSAGraphExecutor
);
public:
// Steal graph inside
explicit
SSAGraphExecutor
(
std
::
unique_ptr
<
SSAGraph
>
&&
graph
);
SSAGraphExecutor
()
{}
virtual
~
SSAGraphExecutor
();
virtual
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
=
0
;
protected:
std
::
unique_ptr
<
SSAGraph
>
graph_
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
e533a4b4
...
...
@@ -21,7 +21,7 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
SSAGraph
>
&&
graph
)
:
SSAGraphExecutor
(
std
::
move
(
graph
)),
:
graph_
(
std
::
move
(
graph
)),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
local_scopes_
(
local_scopes
),
...
...
@@ -189,7 +189,9 @@ void ThreadedSSAGraphExecutor::RunOp(
BlockingQueue
<
VarHandleBase
*>
*
ready_var_q
,
details
::
OpHandleBase
*
op
)
{
auto
op_run
=
[
ready_var_q
,
op
,
this
]
{
try
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
if
(
VLOG_IS_ON
(
10
))
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
}
op
->
Run
(
strategy_
.
use_event_
);
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
running_ops_
--
;
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
e533a4b4
...
...
@@ -51,6 +51,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details
::
OpHandleBase
*
op
);
private:
std
::
unique_ptr
<
SSAGraph
>
graph_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
e533a4b4
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -41,8 +42,6 @@ class ParallelExecutorPrivate {
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
std
::
vector
<
std
::
tuple
<
std
::
string
,
proto
::
VarType
::
Type
,
bool
>>
var_types_
;
bool
own_local_scope
;
};
...
...
@@ -91,9 +90,18 @@ ParallelExecutor::ParallelExecutor(
local_scopes
.
empty
())
{
// Is CUDA
BCastParamsToGPUs
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Create vars in each scope;
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
var
->
Name
();
var_infos
.
back
().
type_
=
var
->
GetType
();
var_infos
.
back
().
persistable_
=
var
->
Persistable
();
}
// Step
2
. Convert main_program to SSA form and dependency graph. Also, insert
// Step
3
. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
builder_
.
reset
(
new
details
::
MultiDevSSAGraphBuilder
(
...
...
@@ -106,16 +114,14 @@ ParallelExecutor::ParallelExecutor(
build_strategy
));
#endif
auto
graph
=
builder_
.
get
()
->
Build
(
main_program
);
auto
graph
=
builder_
->
Build
(
main_program
);
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
// Step 3. Create vars in each scope;
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
member_
->
var_types_
.
emplace_back
(
var
->
Name
(),
var
->
GetType
(),
var
->
Persistable
());
}
member_
->
executor_
.
reset
(
new
details
::
ScopeBufferedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
std
::
move
(
var_infos
),
member_
->
places_
,
std
::
move
(
member_
->
executor_
)));
}
void
ParallelExecutor
::
BCastParamsToGPUs
(
...
...
@@ -178,42 +184,9 @@ void ParallelExecutor::BCastParamsToGPUs(
void
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
)
{
platform
::
RecordBlock
b
(
0
);
// Create local scopes.
for
(
auto
it
=
member_
->
local_scopes_
.
rbegin
();
it
!=
member_
->
local_scopes_
.
rend
();
++
it
)
{
auto
&
scope
=
*
it
;
Scope
&
local_scope
=
scope
->
NewScope
();
*
scope
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
for
(
auto
&
name_type_pair
:
member_
->
var_types_
)
{
if
(
scope
->
FindVar
(
std
::
get
<
0
>
(
name_type_pair
))
!=
nullptr
)
{
continue
;
}
if
(
std
::
get
<
2
>
(
name_type_pair
))
{
// Persistable
InitializeVariable
(
scope
->
Var
(
std
::
get
<
0
>
(
name_type_pair
)),
std
::
get
<
1
>
(
name_type_pair
));
}
else
{
InitializeVariable
(
local_scope
.
Var
(
std
::
get
<
0
>
(
name_type_pair
)),
std
::
get
<
1
>
(
name_type_pair
));
}
}
}
auto
fetch_data
=
member_
->
executor_
->
Run
(
fetch_tensors
);
*
member_
->
global_scope_
->
Var
(
fetched_var_name
)
->
GetMutable
<
FeedFetchList
>
()
=
fetch_data
;
// Wait All computational streams
for
(
auto
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
for
(
auto
&
scope
:
member_
->
local_scopes_
)
{
auto
&
local_scope
=
*
scope
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
();
scope
->
DeleteScope
(
local_scope
);
}
}
void
ParallelExecutor
::
FeedTensorsIntoLocalScopes
(
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
e533a4b4
...
...
@@ -175,7 +175,6 @@ CUDADeviceContext::~CUDADeviceContext() {
Place
CUDADeviceContext
::
GetPlace
()
const
{
return
place_
;
}
void
CUDADeviceContext
::
Wait
()
const
{
std
::
lock_guard
<
std
::
recursive_mutex
>
guard
(
mutex_
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaGetLastError
());
}
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
e533a4b4
...
...
@@ -100,7 +100,6 @@ class CUDADeviceContext : public DeviceContext {
template
<
typename
Callback
>
void
RecordEvent
(
cudaEvent_t
ev
,
Callback
callback
)
{
std
::
lock_guard
<
std
::
recursive_mutex
>
guard
(
mutex_
);
callback
();
PADDLE_ENFORCE
(
cudaEventRecord
(
ev
,
stream_
));
}
...
...
@@ -110,8 +109,6 @@ class CUDADeviceContext : public DeviceContext {
std
::
unique_ptr
<
Eigen
::
GpuDevice
>
eigen_device_
;
std
::
unique_ptr
<
EigenCudaStreamDevice
>
eigen_stream_
;
mutable
std
::
recursive_mutex
mutex_
;
cudaStream_t
stream_
;
cudnnHandle_t
cudnn_handle_
;
cublasHandle_t
cublas_handle_
;
...
...
paddle/fluid/platform/dynload/cublas.h
浏览文件 @
e533a4b4
...
...
@@ -45,7 +45,7 @@ extern void *cublas_dso_handle;
std::call_once(cublas_dso_flag, []() { \
cublas_dso_handle = paddle::platform::dynload::GetCublasDsoHandle(); \
}); \
void *p_##__name = dlsym(cublas_dso_handle, #__name);
\
static void *p_##__name = dlsym(cublas_dso_handle, #__name);
\
return reinterpret_cast<FUNC_TYPE>(p_##__name)(args...); \
} \
}; \
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
e533a4b4
...
...
@@ -39,7 +39,7 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
cudnn_dso_handle = paddle::platform::dynload::GetCUDNNDsoHandle(); \
}); \
EnforceCUDNNLoaded(#__name); \
void* p_##__name = dlsym(cudnn_dso_handle, #__name);
\
static void* p_##__name = dlsym(cudnn_dso_handle, #__name);
\
return reinterpret_cast<cudnn_func>(p_##__name)(args...); \
} \
}; \
...
...
paddle/fluid/platform/dynload/cupti.h
浏览文件 @
e533a4b4
...
...
@@ -45,7 +45,7 @@ extern void *cupti_dso_handle;
std::call_once(cupti_dso_flag, []() { \
cupti_dso_handle = paddle::platform::dynload::GetCUPTIDsoHandle(); \
}); \
void *p_##__name = dlsym(cupti_dso_handle, #__name);
\
static void *p_##__name = dlsym(cupti_dso_handle, #__name);
\
return reinterpret_cast<cuptiFunc>(p_##__name)(args...); \
} \
}; \
...
...
paddle/fluid/platform/dynload/curand.h
浏览文件 @
e533a4b4
...
...
@@ -34,7 +34,7 @@ extern void *curand_dso_handle;
std::call_once(curand_dso_flag, []() { \
curand_dso_handle = paddle::platform::dynload::GetCurandDsoHandle(); \
}); \
void *p_##__name = dlsym(curand_dso_handle, #__name);
\
static void *p_##__name = dlsym(curand_dso_handle, #__name);
\
return reinterpret_cast<curandFunc>(p_##__name)(args...); \
} \
}; \
...
...
paddle/fluid/platform/dynload/nccl.h
浏览文件 @
e533a4b4
...
...
@@ -37,7 +37,7 @@ extern void* nccl_dso_handle;
std::call_once(nccl_dso_flag, []() { \
nccl_dso_handle = paddle::platform::dynload::GetNCCLDsoHandle(); \
}); \
void* p_##__name = dlsym(nccl_dso_handle, #__name);
\
static void* p_##__name = dlsym(nccl_dso_handle, #__name);
\
return reinterpret_cast<nccl_func>(p_##__name)(args...); \
} \
}; \
...
...
paddle/fluid/platform/dynload/tensorrt.h
浏览文件 @
e533a4b4
...
...
@@ -40,7 +40,7 @@ extern void* tensorrt_dso_handle;
paddle::platform::dynload::GetTensorRtDsoHandle(); \
PADDLE_ENFORCE(tensorrt_dso_handle, "load tensorrt so failed"); \
}); \
void* p_##__name = dlsym(tensorrt_dso_handle, #__name);
\
static void* p_##__name = dlsym(tensorrt_dso_handle, #__name);
\
PADDLE_ENFORCE(p_##__name, "load %s failed", #__name); \
return reinterpret_cast<tensorrt_func>(p_##__name)(args...); \
} \
...
...
paddle/fluid/platform/dynload/warpctc.h
浏览文件 @
e533a4b4
...
...
@@ -40,7 +40,7 @@ extern void* warpctc_dso_handle;
std::call_once(warpctc_dso_flag, []() { \
warpctc_dso_handle = paddle::platform::dynload::GetWarpCTCDsoHandle(); \
}); \
void* p_##_name = dlsym(warpctc_dso_handle, #__name);
\
static void* p_##_name = dlsym(warpctc_dso_handle, #__name);
\
return reinterpret_cast<warpctcFunc>(p_##_name)(args...); \
} \
}; \
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
e533a4b4
...
...
@@ -519,6 +519,14 @@ All parameter, weight, gradient are variables in Paddle.
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
self
.
allow_op_delay_
=
allow_op_delay
;
})
.
def_property
(
"num_iteration_per_drop_scope"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_iteration_per_drop_scope_
;
},
[](
ExecutionStrategy
&
self
,
size_t
num_iteration_per_drop_scope
)
{
self
.
num_iteration_per_drop_scope_
=
num_iteration_per_drop_scope
;
});
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
);
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
e533a4b4
...
...
@@ -81,6 +81,8 @@ __all__ = [
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'random_crop'
,
...
...
@@ -3929,22 +3931,25 @@ def dice_loss(input, label, epsilon=0.00001):
return
reduce_mean
(
dice_score
)
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
def
image_resize
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
,
resample
=
'BILINEAR'
):
"""
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
Resize a batch of images.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
and the resizing only applies on the last two dimensions(hight and width).
Supporting resample methods:
'BILINEAR' : Bilinear interpolation
Args:
input (Variable): The input tensor of
resize bilinear
layer,
input (Variable): The input tensor of
image resize
layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_shape(list|tuple|Variable|None): Output shape of
resize bilinear
out_shape(list|tuple|Variable|None): Output shape of
image resize
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width.
...
...
@@ -3953,6 +3958,8 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
resample(str): The resample method. It can only be 'BILINEAR' currently.
Default: 'BILINEAR'
Returns:
out (Variable): The output is a 4-D tensor of the shape
...
...
@@ -3961,8 +3968,12 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
Examples:
.. code-block:: python
out = fluid.layers.
resize_bilinear
(input, out_shape=[12, 12])
out = fluid.layers.
image_resize
(input, out_shape=[12, 12])
"""
resample_methods
=
{
'BILINEAR'
:
'bilinear_interp'
}
if
resample
not
in
resample_methods
:
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR' currently."
)
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None"
)
helper
=
LayerHelper
(
'bilinear_interp'
,
**
locals
())
...
...
@@ -3990,7 +4001,7 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"bilinear_interp"
,
type
=
resample_methods
[
resample
]
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
{
"out_h"
:
out_h
,
...
...
@@ -3998,6 +4009,55 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
return
out
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
"""
This is an alias of layer 'image_resize' with bilinear interpolation.
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
"""
Resize a batch of images. The short edge of input images will be
resized to the given 'out_short_len'. The long edge of input images
will be resized proportionately to make images' length-width ratio
constant.
Args:
input (Variable): The input tensor of image resize layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_short_len(int): The length of output images' short edge.
Returns:
out (Variable): The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
"""
in_shape
=
input
.
shape
if
len
(
in_shape
)
!=
4
:
raise
ValueError
(
"The rank of input must be 4 (num_batches, channels, in_h, in_w)."
)
hw
=
in_shape
[
2
:
4
]
short_idx
=
hw
.
index
(
min
(
hw
))
long_idx
=
1
-
short_idx
out_shape
=
list
(
hw
)
out_shape
[
short_idx
]
=
out_short_len
out_shape
[
long_idx
]
=
int
(
float
(
out_shape
[
long_idx
])
*
(
float
(
out_short_len
)
/
float
(
hw
[
short_idx
]))
+
0.5
)
return
image_resize
(
input
=
input
,
out_shape
=
out_shape
,
resample
=
resample
)
def
gather
(
input
,
index
):
"""
Output is obtained by gathering entries of the outer-most dimension
...
...
@@ -4005,7 +4065,7 @@ def gather(input, index):
.. math::
Out = X[Index]
Out = X[Index]
.. code-block:: text
...
...
@@ -4013,8 +4073,8 @@ def gather(input, index):
Given:
X = [[1, 2],
[3, 4],
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [1, 2]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录