提交 e3c7348f 编写于 作者: D Dang Qingqing

Update quantize_transpiler

上级 1d0353f1
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import numpy as np
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.transpiler.quantize_transpiler import _original_var_name
def linear_fc(num):
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = data
for _ in xrange(num):
hidden = fluid.layers.fc(hidden, size=128, act='relu')
loss = fluid.layers.cross_entropy(input=hidden, label=label)
loss = fluid.layers.mean(loss)
return loss
def residual_block(num):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
bias_attr=False):
tmp = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=bias_attr)
return fluid.layers.batch_norm(input=tmp, act=act)
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = data
for _ in xrange(num):
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
fc = fluid.layers.fc(input=hidden, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
return loss
def conv_net(img, label):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
return avg_loss
class TestQuantizeTranspiler(unittest.TestCase):
def setUp(self):
# since quant_op and dequant_op is not ready, use cos and sin for test
self.weight_quant_op_type = 'fake_quantize_abs_max'
self.dequant_op_type = 'fake_dequantize_max_abs'
self.quantizable_op_and_inputs = {
'conv2d': ['Input', 'Filter'],
'depthwise_conv2d': ['Input', 'Filter'],
'mul': ['X', 'Y']
}
self.quantizable_op_grad_and_inputs = {
'conv2d_grad': ['Input', 'Filter'],
'depthwise_conv2d_grad': ['Input', 'Filter'],
'mul_grad': ['X', 'Y']
}
def check_program(self, program):
quantized_ops = {}
persistable_vars = [
v.name
for v in filter(lambda var: var.persistable, program.list_vars())
]
for block in program.blocks:
for idx, op in enumerate(block.ops):
# check forward
if op.type in self.quantizable_op_and_inputs:
for i, arg_name in enumerate(op.input_arg_names):
quant_op_type = self.weight_quant_op_type if \
_original_var_name(arg_name) \
in persistable_vars else self.act_quant_op_type
self.assertTrue(
arg_name.endswith('.quantized.dequantized'))
if arg_name not in quantized_ops:
self.assertEqual(block.ops[idx - 2 * i - 1].type,
self.dequant_op_type)
self.assertEqual(block.ops[idx - 2 * i - 2].type,
quant_op_type)
quantized_ops[arg_name] = block.ops[idx - 2 * i - 2]
else:
op_idx = block.ops.index(quantized_ops[arg_name])
self.assertLess(op_idx, idx)
# check backward
if op.type in self.quantizable_op_grad_and_inputs:
for pname in self.quantizable_op_grad_and_inputs[op.type]:
arg_name = op.input(pname)[0]
self.assertTrue(
arg_name.endswith('.quantized.dequantized'))
self.assertTrue(arg_name in quantized_ops)
def linear_fc_quant(self, quant_type):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = linear_fc(3)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
t = fluid.QuantizeTranspiler(activation_quantize_type=quant_type)
t.training_transpile(main)
self.check_program(main)
def test_linear_fc_quant_abs_max(self):
self.act_quant_op_type = 'fake_quantize_abs_max'
self.linear_fc_quant('abs_max')
def test_linear_fc_quant_range_abs_max(self):
self.act_quant_op_type = 'fake_quantize_range_abs_max'
self.linear_fc_quant('range_abs_max')
def residual_block_quant(self, quant_type):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = residual_block(2)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
t = fluid.QuantizeTranspiler(activation_quantize_type=quant_type)
t.training_transpile(main)
self.check_program(main)
def test_residual_block_abs_max(self):
self.act_quant_op_type = 'fake_quantize_abs_max'
self.residual_block_quant('abs_max')
def test_residual_block_range_abs_max(self):
self.act_quant_op_type = 'fake_quantize_range_abs_max'
self.residual_block_quant('range_abs_max')
def freeze_program(self, use_cuda):
main = fluid.Program()
startup = fluid.Program()
quant_transpiler = fluid.QuantizeTranspiler()
with fluid.program_guard(main, startup):
img = fluid.layers.data(
name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
loss = conv_net(img, label)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
quant_transpiler.training_transpile(main)
test_program = main.clone()
with fluid.program_guard(test_program):
test_program = fluid.io.get_inference_program(loss)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
iter = 5
batch_size = 8
class_num = 10
exe.run(startup)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
for _ in range(iter):
data = train_reader().next()
loss_v = exe.run(program=main,
feed=feeder.feed(data),
fetch_list=[loss])
test_data = test_reader().next()
f_var = fluid.framework.get_var('conv2d_1.tmp_0', test_program)
w_var = fluid.framework.get_var('conv2d_1.w_0.quantized', test_program)
# Testing during training
test_loss1, f_v1, w_quant = exe.run(program=test_program,
feed=feeder.feed(test_data),
fetch_list=[loss, f_var, w_var])
# Freeze program for inference, but the weight of fc/conv is still float type.
quant_transpiler.freeze_program(test_program, place)
fv2 = fluid.framework.get_var('conv2d_1.tmp_0.dequantized',
test_program)
test_loss2, f_v2 = exe.run(program=test_program,
feed=feeder.feed(test_data),
fetch_list=[loss, fv2])
self.assertAlmostEqual(test_loss1, test_loss2, delta=1e-5)
self.assertAlmostEqual(f_v1.all(), f_v2.all(), delta=1e-5)
w_freeze = np.array(fluid.global_scope().find_var('conv2d_1.w_0')
.get_tensor())
self.assertEqual(np.sum(w_freeze), np.sum(w_quant))
# Convert parameter to 8-bit.
quant_transpiler.convert_to_int8(test_program, place)
# Save the 8-bit parameter and model file.
fluid.io.save_inference_model('model_8bit', ['image', 'label'], [loss],
exe, test_program)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[infer, feed, fetch] = fluid.io.load_inference_model('model_8bit', exe)
# Check the loaded 8-bit weight.
w_8bit = np.array(fluid.global_scope().find_var('conv2d_1.w_0.int8')
.get_tensor())
self.assertEqual(w_8bit.dtype, np.int8)
self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))
def test_freeze_program_cuda(self):
self.freeze_program(True)
if __name__ == '__main__':
unittest.main()
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册