Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e14272bb
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e14272bb
编写于
1月 31, 2018
作者:
G
gaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update accoding to the code review
上级
c3e89f30
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
50 addition
and
43 deletion
+50
-43
paddle/operators/box_coder_op.cu
paddle/operators/box_coder_op.cu
+50
-43
未找到文件。
paddle/operators/box_coder_op.cu
浏览文件 @
e14272bb
...
...
@@ -18,79 +18,85 @@ namespace operators {
template
<
typename
T
>
__global__
void
EncodeCenterSizeKernel
(
const
T
*
prior_box_data
,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
int
row
,
int
col
,
T
*
output
)
{
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
row_idx
=
idx
/
col
;
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
4
+
2
]
-
prior_box_data
[
col_idx
*
4
];
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
];
T
prior_box_height
=
prior_box_data
[
col_idx
*
4
+
3
]
-
prior_box_data
[
col_idx
*
4
+
1
];
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
];
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
4
+
2
]
+
prior_box_data
[
col_idx
*
4
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
4
+
3
]
+
prior_box_data
[
col_idx
*
4
+
1
])
/
2
;
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
prior_box_data
[
col_idx
*
len
+
1
])
/
2
;
T
target_box_center_x
=
(
target_box_data
[
row_idx
*
4
+
2
]
+
target_box_data
[
row_idx
*
4
])
/
2
;
T
target_box_center_y
=
(
target_box_data
[
row_idx
*
4
+
3
]
+
target_box_data
[
row_idx
*
4
+
1
])
/
(
target_box_data
[
row_idx
*
len
+
2
]
+
target_box_data
[
row_idx
*
len
])
/
2
;
T
target_box_center_y
=
(
target_box_data
[
row_idx
*
len
+
3
]
+
target_box_data
[
row_idx
*
len
+
1
])
/
2
;
T
target_box_width
=
target_box_data
[
row_idx
*
4
+
2
]
-
target_box_data
[
row_idx
*
4
];
target_box_data
[
row_idx
*
len
+
2
]
-
target_box_data
[
row_idx
*
len
];
T
target_box_height
=
target_box_data
[
row_idx
*
4
+
3
]
-
target_box_data
[
row_idx
*
4
+
1
];
target_box_data
[
row_idx
*
len
+
3
]
-
target_box_data
[
row_idx
*
len
+
1
];
output
[
idx
*
4
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
/
prior_box_var_data
[
col_idx
*
4
];
output
[
idx
*
4
+
1
]
=
(
target_box_center_y
-
prior_box_center_y
)
/
prior_box_height
/
prior_box_var_data
[
col_idx
*
4
+
1
];
output
[
idx
*
4
+
2
]
=
log
(
fabs
(
target_box_width
/
prior_box_width
))
/
prior_box_var_data
[
col_idx
*
4
+
2
];
output
[
idx
*
4
+
3
]
=
log
(
fabs
(
target_box_height
/
prior_box_height
))
/
prior_box_var_data
[
col_idx
*
4
+
3
];
output
[
idx
*
len
]
=
(
target_box_center_x
-
prior_box_center_x
)
/
prior_box_width
/
prior_box_var_data
[
col_idx
*
len
];
output
[
idx
*
len
+
1
]
=
(
target_box_center_y
-
prior_box_center_y
)
/
prior_box_height
/
prior_box_var_data
[
col_idx
*
len
+
1
];
output
[
idx
*
len
+
2
]
=
log
(
fabs
(
target_box_width
/
prior_box_width
))
/
prior_box_var_data
[
col_idx
*
len
+
2
];
output
[
idx
*
len
+
3
]
=
log
(
fabs
(
target_box_height
/
prior_box_height
))
/
prior_box_var_data
[
col_idx
*
len
+
3
];
}
}
template
<
typename
T
>
__global__
void
DecodeCenterSizeKernel
(
const
T
*
prior_box_data
,
const
T
*
prior_box_var_data
,
const
T
*
target_box_data
,
int
row
,
int
col
,
T
*
output
)
{
const
T
*
target_box_data
,
const
int
row
,
const
int
col
,
const
int
len
,
T
*
output
)
{
const
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
row
*
col
)
{
const
int
row_idx
=
idx
/
col
;
const
int
col_idx
=
idx
%
col
;
T
prior_box_width
=
prior_box_data
[
col_idx
*
4
+
2
]
-
prior_box_data
[
col_idx
*
4
];
prior_box_data
[
col_idx
*
len
+
2
]
-
prior_box_data
[
col_idx
*
len
];
T
prior_box_height
=
prior_box_data
[
col_idx
*
4
+
3
]
-
prior_box_data
[
col_idx
*
4
+
1
];
prior_box_data
[
col_idx
*
len
+
3
]
-
prior_box_data
[
col_idx
*
len
+
1
];
T
prior_box_center_x
=
(
prior_box_data
[
col_idx
*
4
+
2
]
+
prior_box_data
[
col_idx
*
4
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
4
+
3
]
+
prior_box_data
[
col_idx
*
4
+
1
])
/
2
;
(
prior_box_data
[
col_idx
*
len
+
2
]
+
prior_box_data
[
col_idx
*
len
])
/
2
;
T
prior_box_center_y
=
(
prior_box_data
[
col_idx
*
len
+
3
]
+
prior_box_data
[
col_idx
*
len
+
1
])
/
2
;
T
target_box_width
=
exp
(
prior_box_var_data
[
col_idx
*
4
+
2
]
*
target_box_data
[
row_idx
*
4
+
2
])
*
T
target_box_width
=
exp
(
prior_box_var_data
[
col_idx
*
len
+
2
]
*
target_box_data
[
row_idx
*
len
+
2
])
*
prior_box_width
;
T
target_box_height
=
exp
(
prior_box_var_data
[
col_idx
*
4
+
3
]
*
target_box_data
[
row_idx
*
4
+
3
])
*
T
target_box_height
=
exp
(
prior_box_var_data
[
col_idx
*
len
+
3
]
*
target_box_data
[
row_idx
*
len
+
3
])
*
prior_box_height
;
T
target_box_center_x
=
prior_box_var_data
[
col_idx
*
4
]
*
target_box_data
[
row_idx
*
4
]
*
prior_box_width
+
T
target_box_center_x
=
prior_box_var_data
[
col_idx
*
len
]
*
target_box_data
[
row_idx
*
len
]
*
prior_box_width
+
prior_box_center_x
;
T
target_box_center_y
=
prior_box_var_data
[
col_idx
*
4
+
1
]
*
target_box_data
[
row_idx
*
4
+
1
]
*
T
target_box_center_y
=
prior_box_var_data
[
col_idx
*
len
+
1
]
*
target_box_data
[
row_idx
*
len
+
1
]
*
prior_box_height
+
prior_box_center_y
;
output
[
idx
*
4
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
idx
*
4
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
idx
*
4
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
idx
*
4
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
output
[
idx
*
len
]
=
target_box_center_x
-
target_box_width
/
2
;
output
[
idx
*
len
+
1
]
=
target_box_center_y
-
target_box_height
/
2
;
output
[
idx
*
len
+
2
]
=
target_box_center_x
+
target_box_width
/
2
;
output
[
idx
*
len
+
3
]
=
target_box_center_y
+
target_box_height
/
2
;
}
}
...
...
@@ -111,6 +117,7 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
}
auto
row
=
target_box
->
dims
()[
0
];
auto
col
=
prior_box
->
dims
()[
0
];
auto
len
=
prior_box
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
row
*
col
+
block
-
1
)
/
block
;
auto
&
device_ctx
=
context
.
cuda_device_context
();
...
...
@@ -119,17 +126,17 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
const
T
*
prior_box_var_data
=
prior_box_var
->
data
<
T
>
();
const
T
*
target_box_data
=
target_box
->
data
<
T
>
();
output_box
->
mutable_data
<
T
>
({
row
,
col
,
4
},
context
.
GetPlace
());
output_box
->
mutable_data
<
T
>
({
row
,
col
,
len
},
context
.
GetPlace
());
T
*
output
=
output_box
->
data
<
T
>
();
auto
code_type
=
GetBoxCodeType
(
context
.
Attr
<
std
::
string
>
(
"code_type"
));
if
(
code_type
==
BoxCodeType
::
kEncodeCenterSize
)
{
EncodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
output
);
}
else
if
(
code_type
==
BoxCodeType
::
kDecodeCenterSize
)
{
DecodeCenterSizeKernel
<
T
><<<
grid
,
block
,
0
,
device_ctx
.
stream
()
>>>
(
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
prior_box_data
,
prior_box_var_data
,
target_box_data
,
row
,
col
,
len
,
output
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录