Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
dfde0eaa
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dfde0eaa
编写于
10月 10, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] refine en doc (#20360)
* refine en doc. test=develop. test=document_fix
上级
ddb4b337
变更
7
展开全部
隐藏空白更改
内联
并排
Showing
7 changed file
with
288 addition
and
134 deletion
+288
-134
paddle/fluid/API.spec
paddle/fluid/API.spec
+11
-11
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+6
-3
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+36
-32
paddle/fluid/operators/spectral_norm_op.cc
paddle/fluid/operators/spectral_norm_op.cc
+5
-2
paddle/fluid/operators/temporal_shift_op.cc
paddle/fluid/operators/temporal_shift_op.cc
+4
-2
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+38
-19
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+188
-65
未找到文件。
paddle/fluid/API.spec
浏览文件 @
dfde0eaa
...
...
@@ -145,10 +145,10 @@ paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', '5a709f7ef3fdb8fc819d09dc4fbada9a'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'eaa9d0bbd3d4e017c8bc4ecdac483711'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '7ccaea1b93fe4f7387a6036692986c6b'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', '
630cae697d46b4b575b15d56cf8be25a
'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCDHW')), ('document', 'd
b0035a3132b1dfb12e53c57591fb9f6
'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
52343203de40afe29607397e13aaf0d2
'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
55db6ae7275fb9678a6814aebab81a9c
'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', '
daf9ae55b2d54bd5f35acb397fd1e1b5
'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCDHW')), ('document', 'd
f8edcb8dd020fdddf778c9f613dc650
'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
d873fdd73bcd74f9203d347cfb90de75
'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
a94ed07bf4828e318aaaedb8b037579a
'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '1400433bae7876d0407ae205be39b7a1'))
paddle.fluid.layers.instance_norm (ArgSpec(args=['input', 'epsilon', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None)), ('document', '23d6fba8ad8495f67a66d8878be5b0be'))
paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', '5ba4cdb4ea5c03382da545335ffc05b7'))
...
...
@@ -189,7 +189,7 @@ paddle.fluid.layers.row_conv (ArgSpec(args=['input', 'future_context_size', 'par
paddle.fluid.layers.multiplex (ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None), ('document', '2c4d1ae83da6ed35e3b36ba1b3b51d23'))
paddle.fluid.layers.layer_norm (ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)), ('document', '79797f827d89ae72c77960e9696883a9'))
paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None)), ('document', '87dd4b818f102bc1a780e1804c28bd38'))
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '
9461e67095a6fc5d568fb2ce8fef66ff
'))
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '
7b3d14d6707d878923847ec617d7d521
'))
paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax', 'axis'], varargs=None, keywords=None, defaults=(False, -100, True, False, -1)), ('document', '54e1675aa0364f4a78fa72804ec0f413'))
paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'ecb75c1b00c4c76c98b482f633b7a10c'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cdf5dc2078f1e20dc61dd0bec7e28a29'))
...
...
@@ -282,7 +282,7 @@ paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None,
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ecc4b1323028bde0518d666882d03515'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
5d16663e096d7f04954c70ce1cc5e195
'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
90c74742f48c70b103f1fbb9eb129066
'))
paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'e3993a477c94729526040ff65d95728e'))
paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e399f9436fed5f7ff480d8532e42c937'))
paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '45fc3652a8e1aeffbe4eba371c54f756'))
...
...
@@ -290,13 +290,13 @@ paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=Non
paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d'))
paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', 'baa7327ed89df6b7bdd32f9ffdb62f63'))
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '276a1213dd431228cefa33c3146df34a'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', '
13b1cdcb01f5ffdc26591ff9a2ec4669
'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', '
d5945431cdcae3cda21914db5bbf383e
'))
paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None)), ('document', '8404e472ac12b4a30a505d3d3a3e5fdb'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '42d5155374f69786300d90d751956998'))
paddle.fluid.layers.prroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(1.0, 1, 1, None)), ('document', '454c7ea8c73313dd41513929d7526303'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', 'b0e07aa41caae04b07a8e8217cc96020'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '9d93ee81f7a3e526d68bb280bc695d6c'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '
18bc95c62d3300456c3c7da5278b47bb
'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '
45f3ebbcb766fca84cb2fe6307086573
'))
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '3828c4bd81c25af0ab955f52d453c587'))
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '7e5cac851fd9bad344230e1044b6a565'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '3a4eb7cce366f5fd8bc38b42b6af5ba1'))
...
...
@@ -438,9 +438,9 @@ paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_bo
paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ff4a651d65a9a9f9da71349ba6a2dc1f'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', 'b691b7be425e281bd36897b514b2b064'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'c36ac7125da977c2bd1b192bee301f75'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
eaf430c5a0380fb11bfe9a8922cd6295
'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
aa3146f64d5d508e4e50687603aa7b15
'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
ea37a3a8a0b3ce2254e7bc49a0951dbe
'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
48c7b2563a6fc11f23030cde8d7a5c80
'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
63edb712ab4ca837049f24a9421dfe30
'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
ff553aa6546eeb1bc692fadb3df78370
'))
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', 'a343254c36c2e89512cd8cd8a1960ead'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'd9f654117542c6b702963dda107a247f'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'fd57228fb76195e66bbcc8d8e42c494d'))
...
...
paddle/fluid/operators/kldiv_loss_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -69,10 +69,12 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The input tensor of KL divergence loss operator. "
"This is a tensor with shape of [N, *], where N is the "
"batch size, * means any number of additional dimensions."
);
"batch size, * means any number of additional dimensions. "
"The data type is float32 or flaot64"
);
AddInput
(
"Target"
,
"The tensor of KL divergence loss operator. "
"This is a tensor with shape of Input(X)."
);
"This is a tensor with shape of Input(X). "
"The data type is same as Input(X)"
);
AddOutput
(
"Loss"
,
"The output KL divergence loss tensor. if Attr(reduction) is "
...
...
@@ -90,7 +92,8 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target).
between Input(X) and Input(Target). Notes that Input(X) is the
log-probability and Input(Target) is the probability.
KL divergence loss is calculated as follows:
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -200,8 +200,9 @@ void Pool2dOpMaker::Make() {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored."
)
"(bool) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored. "
"Default False."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
...
...
@@ -217,36 +218,38 @@ void Pool2dOpMaker::Make() {
.
SetDefault
({
0
,
0
});
AddAttr
<
bool
>
(
"exclusive"
,
"(bool
, default True
) When true, will exclude the zero-padding in the "
"(bool) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The default is True."
)
"is only used when pooling_type is avg. The default is True. "
"Default True."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool
, default False
) When true, will perform adaptive pooling instead, "
"(bool) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
"pooling in each grid area to get output pooling value. "
"Default False."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool
, default false) Only used in cudnn kernel, need install cudnn.
"
)
"(bool
) Only used in cudnn kernel, need install cudnn. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"ceil_mode"
,
"(bool
, default false
) Whether to use the ceil function to calculate "
"(bool) Whether to use the ceil function to calculate "
"output height and width. False is the default. If it is set to False, "
"the floor function will be used."
)
"the floor function will be used.
Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool
, default false) Only used in mkldnn kernel.
"
)
"(bool
) Only used in mkldnn kernel. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool
, default false
) "
"(bool) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
"Only used on CPU.
Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
...
...
@@ -269,11 +272,11 @@ void Pool2dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function
AddComment
(
R"DOC(
Th
e pooling2d operation calculates the
output based on
the input, pooling_type and
ksize, strides, paddings
parameters.
Input(X) and
o
utput(Out) are in NCHW or NHWC format, where N is batch size, C is the
Th
is operation calculates the pooling
output based on
the input, pooling_type and
pool_size, pool_stride, pool_padding
parameters.
Input(X) and
O
utput(Out) are in NCHW or NHWC format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(
ksize, strides, paddings) are two
elements.
Parameters(
pool_size, pool_stride, pool_padding) hold two integer
elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
...
...
@@ -393,8 +396,9 @@ void Pool3dOpMaker::Make() {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored."
)
"(bool) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored. "
"Default False"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
...
...
@@ -413,30 +417,32 @@ void Pool3dOpMaker::Make() {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"exclusive"
,
"(bool
, default True
) When true, will exclude the zero-padding in the "
"(bool) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The default is True."
)
"is only used when pooling_type is avg. The default is True. "
"Default True"
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool
, default False
) When true, will perform adaptive pooling instead, "
"(bool) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
"pooling in each grid area to get output pooling value. "
"Default False"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool
, default false) Only used in cudnn kernel, need install cudnn.
"
)
"(bool
) Only used in cudnn kernel, need install cudnn. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"ceil_mode"
,
"(bool
, default false
) Whether to use the ceil function to calculate "
"(bool) Whether to use the ceil function to calculate "
"output height and width. False is the default. If it is set to False, "
"the floor function will be used."
)
"the floor function will be used.
Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool
, default false) Only used in mkldnn kernel
"
)
"(bool
) Only used in mkldnn kernel. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
...
...
@@ -454,14 +460,12 @@ void Pool3dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function
AddComment
(
R"DOC(
Pool3d Operator.
The pooling3d operation calculates the output based on
the input, pooling_type, ksize, strides, and paddings parameters.
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(
ksize, strides, paddings
)
are three
elements. These three elements represent depth, height and
width of the feature, respectively. Parameters(
pool_size, pool_stride, pool_padding
)
hold three integer
elements. These three elements represent depth, height and
width, respectively. The input(X) size and output(Out) size may be different.
Example:
...
...
paddle/fluid/operators/spectral_norm_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -88,7 +88,8 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Weight"
,
"The input weight tensor of spectral_norm operator, "
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
"weights of fc, conv1d, conv2d, conv3d layer."
);
"weights of fc, conv1d, conv2d, conv3d layer. "
"The data type is float32 or float64."
);
AddInput
(
"U"
,
"The weight_u tensor of spectral_norm operator, "
"This can be a 1-D tensor in shape [H, 1],"
...
...
@@ -123,7 +124,9 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
1
);
AddAttr
<
float
>
(
"eps"
,
"epsilon for numerical stability in "
"calculating norms"
)
"calculating norms, it will be added to "
"the denominator to aviod divide zero. "
"Default 1e-12."
)
.
SetDefault
(
1e-12
);
AddComment
(
R"DOC(
...
...
paddle/fluid/operators/temporal_shift_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -69,7 +69,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 4-D tensor with shape of [N*T, C, H, W]. "
"While N is the batch size, T is the temporal segment "
"number, C is the channel number, H is the height of "
"features and W is the width of features."
);
"features and W is the width of features. "
"The data type is float32 and float64"
);
AddOutput
(
"Out"
,
"The output tensor of temporal shift operator. "
"This is a 4-D tensor in the same shape with Input(X)."
);
...
...
@@ -82,7 +83,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"The shift ratio of the channels, the first :attr:`shift_ratio` part "
"of channels will be shifted by -1 along the temporal dimension, "
"and the second :attr:`shift_ratio` part of channels will be shifted "
"by 1 along the temporal dimension. Default 0.25."
)
"by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
"range [0, 0.5]. Default 0.25."
)
.
SetDefault
(
0.25
);
AddComment
(
R"DOC(
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
dfde0eaa
...
...
@@ -109,20 +109,25 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
training progresses. By using this function, the learning rate will be decayed by
'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
>>> else:
>>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Args:
learning_rate(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_rate(float): The decay rate. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals.
Default: False
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` every
`decay_steps`. If False, learning rate will be decayed continuously
and following the formula above. Default: False
Returns:
Variable: The decayed learning rate
Variable: The decayed learning rate
. The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -156,20 +161,29 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
def
natural_exp_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
"""Applies natural exponential decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
natural exponential power 'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if not staircase:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
>>> else:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
decay_steps: A Python `int32` number.
decay_rate: A Python `float` number.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by natual exponential power
`decay_rate` every `decay_steps`. If False, learning rate will be
decayed continuously and following the formula above. Default: False
Returns:
The decayed learning rate
The decayed learning rate
. The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -208,20 +222,25 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
training progresses. By using this function, an inverse decay function will be
applied to the initial learning rate.
Decayed learning rate calcualtes as follows:
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args:
learning_rate(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_rate(float): The decay rate. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals.
Default: False
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` times
every `decay_steps`. If False, learning rate will be decayed
continuously and following the formula above. Default: False
Returns:
Variable: The decayed learning rate
Variable: The decayed learning rate
. The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -229,7 +248,7 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
import paddle.fluid as fluid
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.
natural_exp
_decay(
learning_rate=fluid.layers.
inverse_time
_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
dfde0eaa
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录