未验证 提交 df7600ab 编写于 作者: W WangZhen 提交者: GitHub

Move XPU mean and mean_grad to phi (#45512)

* Move XPU mean and mean_grad to phi, test=kunlun

* Fix stream, test=kunlun

* Replace ENFORCE, test=kunlun
上级 657c69bc
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class MeanXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
const T* x_data = input->data<T>();
T* y_data = output->data<T>();
std::vector<int> x_shape;
x_shape.push_back(1);
x_shape.push_back(input->numel());
std::vector<int> rdims = {1};
int r = xpu::reduce_mean(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x_data),
reinterpret_cast<XPUType*>(y_data),
x_shape,
rdims);
PADDLE_ENFORCE_EQ(r,
XPU_SUCCESS,
platform::errors::External(
"XPU reduce_mean kernel return wrong value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
template <typename DeviceContext, typename T>
class MeanGradXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE_EQ(
OG->numel(),
1,
platform::errors::InvalidArgument("Mean Gradient should be scalar"));
auto IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
XPUType* dx = reinterpret_cast<XPUType*>(IG->data<T>());
const T* dy = OG->data<T>();
T dy0_value;
xpu_wait(dev_ctx.x_context()->xpu_stream);
memory::Copy(platform::CPUPlace(), &dy0_value, OG->place(), dy, sizeof(T));
float dy0_fp32 = static_cast<float>(dy0_value);
dy0_fp32 = dy0_fp32 / static_cast<float>(IG->numel());
int r = xpu::constant(
dev_ctx.x_context(), dx, IG->numel(), static_cast<XPUType>(dy0_fp32));
PADDLE_ENFORCE_EQ(r,
XPU_SUCCESS,
platform::errors::External(
"XPU constant kernel return wrong value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
mean,
ops::MeanXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::MeanXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_XPU_KERNEL(
mean_grad,
ops::MeanGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::MeanGradXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/mean_all_grad_kernel.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MeanAllGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out_grad,
DenseTensor* x_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
auto OG = &out_grad;
PADDLE_ENFORCE_EQ(
OG->numel(),
1,
phi::errors::InvalidArgument("Mean Gradient should be scalar"));
auto IG = x_grad;
dev_ctx.template Alloc<T>(IG);
XPUType* dx = reinterpret_cast<XPUType*>(IG->data<T>());
const T* dy = OG->data<T>();
T dy0_value;
xpu_wait(dev_ctx.x_context()->xpu_stream);
paddle::memory::Copy(phi::CPUPlace(), &dy0_value, OG->place(), dy, sizeof(T));
float dy0_fp32 = static_cast<float>(dy0_value);
dy0_fp32 = dy0_fp32 / static_cast<float>(IG->numel());
int r = xpu::constant(
dev_ctx.x_context(), dx, IG->numel(), static_cast<XPUType>(dy0_fp32));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "mean_all_grad");
}
} // namespace phi
PD_REGISTER_KERNEL(mean_all_grad,
XPU,
ALL_LAYOUT,
phi::MeanAllGradKernel,
float,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/mean_all_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void MeanAllKernel(const Context& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
auto* input = &x;
auto* output = out;
dev_ctx.template Alloc<T>(out);
const T* x_data = input->data<T>();
T* y_data = output->data<T>();
std::vector<int> x_shape;
x_shape.push_back(1);
x_shape.push_back(input->numel());
std::vector<int> rdims = {1};
int r = xpu::reduce_mean(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x_data),
reinterpret_cast<XPUType*>(y_data),
x_shape,
rdims);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "mean_all");
}
} // namespace phi
PD_REGISTER_KERNEL(
mean_all, XPU, ALL_LAYOUT, phi::MeanAllKernel, float, phi::dtype::float16) {
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册