Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
dce0383f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dce0383f
编写于
2月 27, 2018
作者:
T
Tao Luo
提交者:
GitHub
2月 27, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8404 from Xreki/core_refine_inference
Refine the inference API and unittests
上级
0dbaad57
efb6ba35
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
450 addition
and
351 deletion
+450
-351
paddle/fluid/framework/lod_tensor.cc
paddle/fluid/framework/lod_tensor.cc
+7
-1
paddle/fluid/inference/io.cc
paddle/fluid/inference/io.cc
+7
-20
paddle/fluid/inference/tests/book/CMakeLists.txt
paddle/fluid/inference/tests/book/CMakeLists.txt
+1
-1
paddle/fluid/inference/tests/book/test_inference_label_semantic_roles.cc
...ference/tests/book/test_inference_label_semantic_roles.cc
+36
-10
paddle/fluid/inference/tests/book/test_inference_understand_sentiment.cc
...ference/tests/book/test_inference_understand_sentiment.cc
+6
-1
paddle/fluid/inference/tests/book/test_inference_word2vec.cc
paddle/fluid/inference/tests/book/test_inference_word2vec.cc
+5
-5
paddle/fluid/inference/tests/test_helper.h
paddle/fluid/inference/tests/test_helper.h
+2
-2
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+57
-41
python/paddle/fluid/tests/book/notest_rnn_encoder_decoer.py
python/paddle/fluid/tests/book/notest_rnn_encoder_decoer.py
+28
-26
python/paddle/fluid/tests/book/test_fit_a_line.py
python/paddle/fluid/tests/book/test_fit_a_line.py
+20
-17
python/paddle/fluid/tests/book/test_image_classification.py
python/paddle/fluid/tests/book/test_image_classification.py
+20
-16
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+57
-47
python/paddle/fluid/tests/book/test_recognize_digits.py
python/paddle/fluid/tests/book/test_recognize_digits.py
+43
-29
python/paddle/fluid/tests/book/test_recommender_system.py
python/paddle/fluid/tests/book/test_recommender_system.py
+47
-45
python/paddle/fluid/tests/book/test_understand_sentiment.py
python/paddle/fluid/tests/book/test_understand_sentiment.py
+40
-29
python/paddle/fluid/tests/book/test_word2vec.py
python/paddle/fluid/tests/book/test_word2vec.py
+74
-61
未找到文件。
paddle/fluid/framework/lod_tensor.cc
浏览文件 @
dce0383f
...
...
@@ -31,8 +31,14 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os
<<
"{"
;
for
(
auto
&
v
:
lod
)
{
os
<<
"{"
;
bool
is_first
=
true
;
for
(
auto
&
i
:
v
)
{
os
<<
i
<<
","
;
if
(
is_first
)
{
os
<<
i
;
is_first
=
false
;
}
else
{
os
<<
", "
<<
i
;
}
}
os
<<
"}"
;
}
...
...
paddle/fluid/inference/io.cc
浏览文件 @
dce0383f
...
...
@@ -32,23 +32,11 @@ void ReadBinaryFile(const std::string& filename, std::string& contents) {
inputfs
.
close
();
}
bool
IsParameter
(
const
framework
::
VarDesc
*
var
,
const
framework
::
ProgramDesc
&
main_program
)
{
if
(
var
->
Persistable
())
{
// There are many unreachable variables in the program
for
(
size_t
i
=
0
;
i
<
main_program
.
Size
();
++
i
)
{
const
framework
::
BlockDesc
&
block
=
main_program
.
Block
(
i
);
for
(
auto
*
op
:
block
.
AllOps
())
{
if
(
op
->
Type
()
==
framework
::
kFeedOpType
)
{
continue
;
}
for
(
auto
input_argument_name
:
op
->
InputArgumentNames
())
{
if
(
input_argument_name
==
var
->
Name
())
{
return
true
;
}
}
}
}
bool
IsPersistable
(
const
framework
::
VarDesc
*
var
)
{
if
(
var
->
Persistable
()
&&
var
->
GetType
()
!=
framework
::
proto
::
VarType
::
FEED_MINIBATCH
&&
var
->
GetType
()
!=
framework
::
proto
::
VarType
::
FETCH_LIST
)
{
return
true
;
}
return
false
;
}
...
...
@@ -65,8 +53,8 @@ void LoadPersistables(framework::Executor& executor,
std
::
vector
<
std
::
string
>
paramlist
;
for
(
auto
*
var
:
global_block
.
AllVars
())
{
if
(
IsP
arameter
(
var
,
main_program
))
{
VLOG
(
3
)
<<
"p
arameter
's name: "
<<
var
->
Name
();
if
(
IsP
ersistable
(
var
))
{
VLOG
(
3
)
<<
"p
ersistable variable
's name: "
<<
var
->
Name
();
framework
::
VarDesc
*
new_var
=
load_block
->
Var
(
var
->
Name
());
new_var
->
SetShape
(
var
->
GetShape
());
...
...
@@ -101,7 +89,6 @@ void LoadPersistables(framework::Executor& executor,
executor
.
Run
(
*
load_program
,
&
scope
,
0
,
true
,
true
);
VLOG
(
3
)
<<
"Ran loading successfully"
;
delete
load_program
;
}
...
...
paddle/fluid/inference/tests/book/CMakeLists.txt
浏览文件 @
dce0383f
...
...
@@ -30,5 +30,5 @@ inference_test(label_semantic_roles)
inference_test
(
recognize_digits ARGS mlp conv
)
inference_test
(
recommender_system
)
#inference_test(rnn_encoder_decoder)
inference_test
(
understand_sentiment
)
inference_test
(
understand_sentiment
ARGS conv
)
inference_test
(
word2vec
)
paddle/fluid/inference/tests/book/test_inference_label_semantic_roles.cc
浏览文件 @
dce0383f
...
...
@@ -32,16 +32,42 @@ TEST(inference, label_semantic_roles) {
paddle
::
framework
::
LoDTensor
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
;
paddle
::
framework
::
LoD
lod
{{
0
,
4
,
10
}};
SetupLoDTensor
(
word
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
predicate
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_n2
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_n1
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_0
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_p1
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_p2
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
mark
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
int64_t
word_dict_len
=
44068
;
int64_t
predicate_dict_len
=
3162
;
int64_t
mark_dict_len
=
2
;
SetupLoDTensor
(
word
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
SetupLoDTensor
(
predicate
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
predicate_dict_len
-
1
));
SetupLoDTensor
(
ctx_n2
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
SetupLoDTensor
(
ctx_n1
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
SetupLoDTensor
(
ctx_0
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
SetupLoDTensor
(
ctx_p1
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
SetupLoDTensor
(
ctx_p2
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
SetupLoDTensor
(
mark
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
mark_dict_len
-
1
));
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
word
);
...
...
paddle/fluid/inference/tests/book/test_inference_understand_sentiment.cc
浏览文件 @
dce0383f
...
...
@@ -31,7 +31,12 @@ TEST(inference, understand_sentiment) {
paddle
::
framework
::
LoDTensor
words
;
paddle
::
framework
::
LoD
lod
{{
0
,
4
,
10
}};
SetupLoDTensor
(
words
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
10
));
int64_t
word_dict_len
=
5147
;
SetupLoDTensor
(
words
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
word_dict_len
-
1
));
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
words
);
...
...
paddle/fluid/inference/tests/book/test_inference_word2vec.cc
浏览文件 @
dce0383f
...
...
@@ -31,12 +31,12 @@ TEST(inference, word2vec) {
paddle
::
framework
::
LoDTensor
first_word
,
second_word
,
third_word
,
fourth_word
;
paddle
::
framework
::
LoD
lod
{{
0
,
1
}};
int64_t
dict_size
=
207
2
;
// Hard-coding t
he size of dictionary
int64_t
dict_size
=
207
3
;
// T
he size of dictionary
SetupLoDTensor
(
first_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
second_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
third_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
fourth_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
first_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
SetupLoDTensor
(
second_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
SetupLoDTensor
(
third_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
SetupLoDTensor
(
fourth_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
first_word
);
...
...
paddle/fluid/inference/tests/test_helper.h
浏览文件 @
dce0383f
...
...
@@ -101,8 +101,8 @@ void TestInference(const std::string& dirname,
if
(
IsCombined
)
{
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
//
Users are free to specify different filename
//
(provided: the filenames are changed in the python api as well: io.py)
//
The file names should be consistent with that used in Python API
//
`fluid.io.save_inference_model`.
std
::
string
prog_filename
=
"__model_combined__"
;
std
::
string
param_filename
=
"__params_combined__"
;
inference_program
=
paddle
::
inference
::
Load
(
executor
,
...
...
python/paddle/fluid/io.py
浏览文件 @
dce0383f
...
...
@@ -68,7 +68,7 @@ def save_vars(executor,
main_program
=
None
,
vars
=
None
,
predicate
=
None
,
save_file_
name
=
None
):
file
name
=
None
):
"""
Save variables to directory by executor.
...
...
@@ -80,8 +80,8 @@ def save_vars(executor,
as a bool. If it returns true, the corresponding input variable will be saved.
:param vars: variables need to be saved. If vars is specified, program & predicate
will be ignored
:param
save_file_name: The name of a single file that all vars are saved to.
If it is None, save variables to separate files.
:param
filename: The name of a single file that all vars are saved to.
If it is None, save variables to separate files.
:return: None
"""
...
...
@@ -95,7 +95,7 @@ def save_vars(executor,
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
main_program
.
list_vars
()),
save_file_name
=
save_file_
name
)
filename
=
file
name
)
else
:
save_program
=
Program
()
save_block
=
save_program
.
global_block
()
...
...
@@ -103,7 +103,7 @@ def save_vars(executor,
save_var_map
=
{}
for
each_var
in
vars
:
new_var
=
_clone_var_in_block_
(
save_block
,
each_var
)
if
save_file_
name
is
None
:
if
file
name
is
None
:
save_block
.
append_op
(
type
=
'save'
,
inputs
=
{
'X'
:
[
new_var
]},
...
...
@@ -112,7 +112,7 @@ def save_vars(executor,
else
:
save_var_map
[
new_var
.
name
]
=
new_var
if
save_file_
name
is
not
None
:
if
file
name
is
not
None
:
save_var_list
=
[]
for
name
in
sorted
(
save_var_map
.
keys
()):
save_var_list
.
append
(
save_var_map
[
name
])
...
...
@@ -121,12 +121,12 @@ def save_vars(executor,
type
=
'save_combine'
,
inputs
=
{
'X'
:
save_var_list
},
outputs
=
{},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
save_file_
name
)})
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
file
name
)})
executor
.
run
(
save_program
)
def
save_params
(
executor
,
dirname
,
main_program
=
None
,
save_file_
name
=
None
):
def
save_params
(
executor
,
dirname
,
main_program
=
None
,
file
name
=
None
):
"""
Save all parameters to directory with executor.
"""
...
...
@@ -136,11 +136,10 @@ def save_params(executor, dirname, main_program=None, save_file_name=None):
main_program
=
main_program
,
vars
=
None
,
predicate
=
is_parameter
,
save_file_name
=
save_file_
name
)
filename
=
file
name
)
def
save_persistables
(
executor
,
dirname
,
main_program
=
None
,
save_file_name
=
None
):
def
save_persistables
(
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
"""
Save all persistables to directory with executor.
"""
...
...
@@ -150,7 +149,7 @@ def save_persistables(executor, dirname, main_program=None,
main_program
=
main_program
,
vars
=
None
,
predicate
=
is_persistable
,
save_file_name
=
save_file_
name
)
filename
=
file
name
)
def
load_vars
(
executor
,
...
...
@@ -158,7 +157,7 @@ def load_vars(executor,
main_program
=
None
,
vars
=
None
,
predicate
=
None
,
load_file_
name
=
None
):
file
name
=
None
):
"""
Load variables from directory by executor.
...
...
@@ -170,8 +169,8 @@ def load_vars(executor,
as a bool. If it returns true, the corresponding input variable will be loaded.
:param vars: variables need to be loaded. If vars is specified, program &
predicate will be ignored
:param
load_file_name: The name of the single file that all vars are loaded from.
If it is None, load variables from separate files.
:param
filename: The name of the single file that all vars are loaded from.
If it is None, load variables from separate files.
:return: None
"""
...
...
@@ -185,7 +184,7 @@ def load_vars(executor,
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
main_program
.
list_vars
()),
load_file_name
=
load_file_
name
)
filename
=
file
name
)
else
:
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
...
...
@@ -194,7 +193,7 @@ def load_vars(executor,
for
each_var
in
vars
:
assert
isinstance
(
each_var
,
Variable
)
new_var
=
_clone_var_in_block_
(
load_block
,
each_var
)
if
load_file_
name
is
None
:
if
file
name
is
None
:
load_block
.
append_op
(
type
=
'load'
,
inputs
=
{},
...
...
@@ -203,7 +202,7 @@ def load_vars(executor,
else
:
load_var_map
[
new_var
.
name
]
=
new_var
if
load_file_
name
is
not
None
:
if
file
name
is
not
None
:
load_var_list
=
[]
for
name
in
sorted
(
load_var_map
.
keys
()):
load_var_list
.
append
(
load_var_map
[
name
])
...
...
@@ -212,12 +211,12 @@ def load_vars(executor,
type
=
'load_combine'
,
inputs
=
{},
outputs
=
{
"Out"
:
load_var_list
},
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
load_file_
name
)})
attrs
=
{
'file_path'
:
os
.
path
.
join
(
dirname
,
file
name
)})
executor
.
run
(
load_prog
)
def
load_params
(
executor
,
dirname
,
main_program
=
None
,
load_file_
name
=
None
):
def
load_params
(
executor
,
dirname
,
main_program
=
None
,
file
name
=
None
):
"""
load all parameters from directory by executor.
"""
...
...
@@ -226,11 +225,10 @@ def load_params(executor, dirname, main_program=None, load_file_name=None):
dirname
=
dirname
,
main_program
=
main_program
,
predicate
=
is_parameter
,
load_file_name
=
load_file_
name
)
filename
=
file
name
)
def
load_persistables
(
executor
,
dirname
,
main_program
=
None
,
load_file_name
=
None
):
def
load_persistables
(
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
"""
load all persistables from directory by executor.
"""
...
...
@@ -239,7 +237,7 @@ def load_persistables(executor, dirname, main_program=None,
dirname
=
dirname
,
main_program
=
main_program
,
predicate
=
is_persistable
,
load_file_name
=
load_file_
name
)
filename
=
file
name
)
def
get_inference_program
(
target_vars
,
main_program
=
None
):
...
...
@@ -299,7 +297,8 @@ def save_inference_model(dirname,
target_vars
,
executor
,
main_program
=
None
,
save_file_name
=
None
):
model_filename
=
None
,
params_filename
=
None
):
"""
Build a model especially for inference,
and save it to directory by the executor.
...
...
@@ -310,8 +309,11 @@ def save_inference_model(dirname,
:param executor: executor that save inference model
:param main_program: original program, which will be pruned to build the inference model.
Default default_main_program().
:param save_file_name: The name of a single file that all parameters are saved to.
If it is None, save parameters to separate files.
:param model_filename: The name of file to save inference program.
If not specified, default filename `__model__` will be used.
:param params_filename: The name of file to save parameters.
It is used for the case that all parameters are saved in a single binary file.
If not specified, parameters are considered saved in separate files.
:return: None
"""
...
...
@@ -342,15 +344,19 @@ def save_inference_model(dirname,
prepend_feed_ops
(
inference_program
,
feeded_var_names
)
append_fetch_ops
(
inference_program
,
fetch_var_names
)
if
save_file_name
==
None
:
model_file
_name
=
dirname
+
"/__model__"
if
model_filename
is
not
None
:
model_file
name
=
os
.
path
.
basename
(
model_filename
)
else
:
model_file_name
=
dirname
+
"/__model_combined__"
model_filename
=
"__model__"
model_filename
=
os
.
path
.
join
(
dirname
,
model_filename
)
with
open
(
model_file_name
,
"wb"
)
as
f
:
if
params_filename
is
not
None
:
params_filename
=
os
.
path
.
basename
(
params_filename
)
with
open
(
model_filename
,
"wb"
)
as
f
:
f
.
write
(
inference_program
.
desc
.
serialize_to_string
())
save_persistables
(
executor
,
dirname
,
inference_program
,
save_file_
name
)
save_persistables
(
executor
,
dirname
,
inference_program
,
params_file
name
)
def
get_feed_targets_names
(
program
):
...
...
@@ -371,15 +377,21 @@ def get_fetch_targets_names(program):
return
fetch_targets_names
def
load_inference_model
(
dirname
,
executor
,
load_file_name
=
None
):
def
load_inference_model
(
dirname
,
executor
,
model_filename
=
None
,
params_filename
=
None
):
"""
Load inference model from a directory
:param dirname: directory path
:param executor: executor that load inference model
:param load_file_name: The name of the single file that all parameters are loaded from.
If it is None, load parameters from separate files.
:param model_filename: The name of file to load inference program.
If not specified, default filename `__model__` will be used.
:param params_filename: The name of file to load parameters.
It is used for the case that all parameters are saved in a single binary file.
If not specified, parameters are considered saved in separate files.
:return: [program, feed_target_names, fetch_targets]
program: program especially for inference.
feed_target_names: Names of variables that need to feed data
...
...
@@ -388,16 +400,20 @@ def load_inference_model(dirname, executor, load_file_name=None):
if
not
os
.
path
.
isdir
(
dirname
):
raise
ValueError
(
"There is no directory named '%s'"
,
dirname
)
if
load_file_name
==
None
:
model_file
_name
=
dirname
+
"/__model__"
if
model_filename
is
not
None
:
model_file
name
=
os
.
path
.
basename
(
model_filename
)
else
:
model_file_name
=
dirname
+
"/__model_combined__"
model_filename
=
"__model__"
model_filename
=
os
.
path
.
join
(
dirname
,
model_filename
)
if
params_filename
is
not
None
:
params_filename
=
os
.
path
.
basename
(
params_filename
)
with
open
(
model_file
_
name
,
"rb"
)
as
f
:
with
open
(
model_filename
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
program
=
Program
.
parse_from_string
(
program_desc_str
)
load_persistables
(
executor
,
dirname
,
program
,
load_file_
name
)
load_persistables
(
executor
,
dirname
,
program
,
params_file
name
)
feed_target_names
=
get_feed_targets_names
(
program
)
fetch_target_names
=
get_fetch_targets_names
(
program
)
...
...
python/paddle/fluid/tests/book/notest_rnn_encoder_decoer.py
浏览文件 @
dce0383f
...
...
@@ -228,32 +228,34 @@ def infer(use_cuda, save_dirname=None):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
word_data
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
trg_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'source_sequence'
assert
feed_target_names
[
1
]
==
'target_sequence'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word_data
,
feed_target_names
[
1
]:
trg_word
,
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
word_data
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
trg_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'source_sequence'
assert
feed_target_names
[
1
]
==
'target_sequence'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word_data
,
feed_target_names
[
1
]:
trg_word
,
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_fit_a_line.py
浏览文件 @
dce0383f
...
...
@@ -72,23 +72,26 @@ def infer(use_cuda, save_dirname=None):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size
=
10
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
assert
feed_target_names
[
0
]
==
'x'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_x
},
fetch_list
=
fetch_targets
)
print
(
"infer shape: "
,
results
[
0
].
shape
)
print
(
"infer results: "
,
results
[
0
])
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size
=
10
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
assert
feed_target_names
[
0
]
==
'x'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_x
},
fetch_list
=
fetch_targets
)
print
(
"infer shape: "
,
results
[
0
].
shape
)
print
(
"infer results: "
,
results
[
0
])
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_image_classification.py
浏览文件 @
dce0383f
...
...
@@ -174,22 +174,26 @@ def infer(use_cuda, save_dirname=None):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension of conv should be 4-D or 5-D.
tensor_img
=
numpy
.
random
.
rand
(
1
,
3
,
32
,
32
).
astype
(
"float32"
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
print
(
"infer results: "
,
results
[
0
])
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [0, 1.0].
batch_size
=
1
tensor_img
=
numpy
.
random
.
rand
(
batch_size
,
3
,
32
,
32
).
astype
(
"float32"
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
print
(
"infer results: "
,
results
[
0
])
def
main
(
net_type
,
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
dce0383f
...
...
@@ -26,7 +26,7 @@ import unittest
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
pred_len
=
len
(
verb_dict
)
pred_
dict_
len
=
len
(
verb_dict
)
mark_dict_len
=
2
word_dim
=
32
...
...
@@ -53,7 +53,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
size
=
[
pred_len
,
word_dim
],
size
=
[
pred_
dict_
len
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'vemb'
)
...
...
@@ -234,6 +234,7 @@ def train(use_cuda, save_dirname=None):
# Set the threshold low to speed up the CI test
if
float
(
pass_precision
)
>
0.05
:
if
save_dirname
is
not
None
:
# TODO(liuyiqun): Change the target to crf_decode
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
...
...
@@ -251,51 +252,60 @@ def infer(use_cuda, save_dirname=None):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
ts_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_pred
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_n2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_n1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_0
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_p1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_p2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_mark
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'word_data'
assert
feed_target_names
[
1
]
==
'verb_data'
assert
feed_target_names
[
2
]
==
'ctx_n2_data'
assert
feed_target_names
[
3
]
==
'ctx_n1_data'
assert
feed_target_names
[
4
]
==
'ctx_0_data'
assert
feed_target_names
[
5
]
==
'ctx_p1_data'
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
7
]
==
'mark_data'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
ts_word
,
feed_target_names
[
1
]:
ts_pred
,
feed_target_names
[
2
]:
ts_ctx_n2
,
feed_target_names
[
3
]:
ts_ctx_n1
,
feed_target_names
[
4
]:
ts_ctx_0
,
feed_target_names
[
5
]:
ts_ctx_p1
,
feed_target_names
[
6
]:
ts_ctx_p2
,
feed_target_names
[
7
]:
ts_mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
pred
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
pred_dict_len
-
1
)
ctx_n2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_n1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_0
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
mark
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
mark_dict_len
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'word_data'
assert
feed_target_names
[
1
]
==
'verb_data'
assert
feed_target_names
[
2
]
==
'ctx_n2_data'
assert
feed_target_names
[
3
]
==
'ctx_n1_data'
assert
feed_target_names
[
4
]
==
'ctx_0_data'
assert
feed_target_names
[
5
]
==
'ctx_p1_data'
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
7
]
==
'mark_data'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word
,
feed_target_names
[
1
]:
pred
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
6
]:
ctx_p2
,
feed_target_names
[
7
]:
mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_recognize_digits.py
浏览文件 @
dce0383f
...
...
@@ -78,7 +78,12 @@ def conv_net(img, label):
return
loss_net
(
conv_pool_2
,
label
)
def
train
(
nn_type
,
use_cuda
,
parallel
,
save_dirname
,
save_param_filename
):
def
train
(
nn_type
,
use_cuda
,
parallel
,
save_dirname
=
None
,
model_filename
=
None
,
params_filename
=
None
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
...
...
@@ -146,7 +151,8 @@ def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"img"
],
[
prediction
],
exe
,
save_file_name
=
save_param_filename
)
model_filename
=
model_filename
,
params_filename
=
params_filename
)
return
else
:
print
(
...
...
@@ -158,54 +164,62 @@ def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
raise
AssertionError
(
"Loss of recognize digits is too large"
)
def
infer
(
use_cuda
,
save_dirname
=
None
,
param_filename
=
None
):
def
infer
(
use_cuda
,
save_dirname
=
None
,
model_filename
=
None
,
params_filename
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
,
param_filename
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
[
batch_size
,
1
,
28
,
28
]).
astype
(
"float32"
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
print
(
"infer results: "
,
results
[
0
])
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
,
model_filename
,
params_filename
)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
[
batch_size
,
1
,
28
,
28
]).
astype
(
"float32"
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
print
(
"infer results: "
,
results
[
0
])
def
main
(
use_cuda
,
parallel
,
nn_type
,
combine
):
save_dirname
=
None
model_filename
=
None
params_filename
=
None
if
not
use_cuda
and
not
parallel
:
save_dirname
=
"recognize_digits_"
+
nn_type
+
".inference.model"
save_filename
=
None
if
combine
==
True
:
save_filename
=
"__params_combined__"
else
:
save_dirname
=
None
save_filename
=
None
model_filename
=
"__model_combined__"
params_filename
=
"__params_combined__"
train
(
nn_type
=
nn_type
,
use_cuda
=
use_cuda
,
parallel
=
parallel
,
save_dirname
=
save_dirname
,
save_param_filename
=
save_filename
)
model_filename
=
model_filename
,
params_filename
=
params_filename
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
,
param_filename
=
save_filename
)
model_filename
=
model_filename
,
params_filename
=
params_filename
)
class
TestRecognizeDigits
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/book/test_recommender_system.py
浏览文件 @
dce0383f
...
...
@@ -251,13 +251,6 @@ def infer(use_cuda, save_dirname=None):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
def
create_lod_tensor
(
data
,
lod
=
None
):
tensor
=
fluid
.
LoDTensor
()
if
lod
is
None
:
...
...
@@ -275,44 +268,53 @@ def infer(use_cuda, save_dirname=None):
tensor
.
set
(
flattened_data
,
place
)
return
tensor
# Use the first data from paddle.dataset.movielens.test() as input
assert
feed_target_names
[
0
]
==
"user_id"
user_id
=
create_lod_tensor
([[
1
]])
assert
feed_target_names
[
1
]
==
"gender_id"
gender_id
=
create_lod_tensor
([[
1
]])
assert
feed_target_names
[
2
]
==
"age_id"
age_id
=
create_lod_tensor
([[
0
]])
assert
feed_target_names
[
3
]
==
"job_id"
job_id
=
create_lod_tensor
([[
10
]])
assert
feed_target_names
[
4
]
==
"movie_id"
movie_id
=
create_lod_tensor
([[
783
]])
assert
feed_target_names
[
5
]
==
"category_id"
category_id
=
create_lod_tensor
([[
10
],
[
8
],
[
9
]],
[[
0
,
3
]])
assert
feed_target_names
[
6
]
==
"movie_title"
movie_title
=
create_lod_tensor
([[
1069
],
[
4140
],
[
2923
],
[
710
],
[
988
]],
[[
0
,
5
]])
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
user_id
,
feed_target_names
[
1
]:
gender_id
,
feed_target_names
[
2
]:
age_id
,
feed_target_names
[
3
]:
job_id
,
feed_target_names
[
4
]:
movie_id
,
feed_target_names
[
5
]:
category_id
,
feed_target_names
[
6
]:
movie_title
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
"inferred score: "
,
np
.
array
(
results
[
0
]))
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# Use the first data from paddle.dataset.movielens.test() as input
assert
feed_target_names
[
0
]
==
"user_id"
user_id
=
create_lod_tensor
([[
1
]])
assert
feed_target_names
[
1
]
==
"gender_id"
gender_id
=
create_lod_tensor
([[
1
]])
assert
feed_target_names
[
2
]
==
"age_id"
age_id
=
create_lod_tensor
([[
0
]])
assert
feed_target_names
[
3
]
==
"job_id"
job_id
=
create_lod_tensor
([[
10
]])
assert
feed_target_names
[
4
]
==
"movie_id"
movie_id
=
create_lod_tensor
([[
783
]])
assert
feed_target_names
[
5
]
==
"category_id"
category_id
=
create_lod_tensor
([[
10
],
[
8
],
[
9
]],
[[
0
,
3
]])
assert
feed_target_names
[
6
]
==
"movie_title"
movie_title
=
create_lod_tensor
([[
1069
],
[
4140
],
[
2923
],
[
710
],
[
988
]],
[[
0
,
5
]])
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
user_id
,
feed_target_names
[
1
]:
gender_id
,
feed_target_names
[
2
]:
age_id
,
feed_target_names
[
3
]:
job_id
,
feed_target_names
[
4
]:
movie_id
,
feed_target_names
[
5
]:
category_id
,
feed_target_names
[
6
]:
movie_title
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
"inferred score: "
,
np
.
array
(
results
[
0
]))
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_understand_sentiment.py
浏览文件 @
dce0383f
#
Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -193,36 +193,39 @@ def train(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
net_method
.
__name__
))
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
word_dict
,
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
"words"
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_words
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
word_dict_len
=
len
(
word_dict
)
lod
=
[
0
,
4
,
10
]
tensor_words
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
"words"
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_words
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
def
main
(
word_dict
,
net_method
,
use_cuda
,
parallel
=
False
,
save_dirname
=
None
):
...
...
@@ -258,7 +261,7 @@ class TestUnderstandSentiment(unittest.TestCase):
self
.
word_dict
,
net_method
=
convolution_net
,
use_cuda
=
False
,
save_dirname
=
"understand_sentiment.inference.model"
)
save_dirname
=
"understand_sentiment
_conv
.inference.model"
)
def
test_conv_cpu_parallel
(
self
):
with
self
.
new_program_scope
():
...
...
@@ -271,7 +274,11 @@ class TestUnderstandSentiment(unittest.TestCase):
@
unittest
.
skip
(
reason
=
"make CI faster"
)
def
test_stacked_lstm_cpu
(
self
):
with
self
.
new_program_scope
():
main
(
self
.
word_dict
,
net_method
=
stacked_lstm_net
,
use_cuda
=
False
)
main
(
self
.
word_dict
,
net_method
=
stacked_lstm_net
,
use_cuda
=
False
,
save_dirname
=
"understand_sentiment_stacked_lstm.inference.model"
)
def
test_stacked_lstm_cpu_parallel
(
self
):
with
self
.
new_program_scope
():
...
...
@@ -287,7 +294,7 @@ class TestUnderstandSentiment(unittest.TestCase):
self
.
word_dict
,
net_method
=
convolution_net
,
use_cuda
=
True
,
save_dirname
=
"understand_sentiment.inference.model"
)
save_dirname
=
"understand_sentiment
_conv
.inference.model"
)
def
test_conv_gpu_parallel
(
self
):
with
self
.
new_program_scope
():
...
...
@@ -300,7 +307,11 @@ class TestUnderstandSentiment(unittest.TestCase):
@
unittest
.
skip
(
reason
=
"make CI faster"
)
def
test_stacked_lstm_gpu
(
self
):
with
self
.
new_program_scope
():
main
(
self
.
word_dict
,
net_method
=
stacked_lstm_net
,
use_cuda
=
True
)
main
(
self
.
word_dict
,
net_method
=
stacked_lstm_net
,
use_cuda
=
True
,
save_dirname
=
"understand_sentiment_stacked_lstm.inference.model"
)
def
test_stacked_lstm_gpu_parallel
(
self
):
with
self
.
new_program_scope
():
...
...
python/paddle/fluid/tests/book/test_word2vec.py
浏览文件 @
dce0383f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# # Licensed under the Apache License, Version 2.0 (the "License");
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
...
...
@@ -21,6 +22,7 @@ import sys
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
# The range of data elements is [low, high]
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
...
...
@@ -28,54 +30,7 @@ def create_random_lodtensor(lod, place, low, high):
return
res
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
-
1
# Setup input, by creating 4 words, and setting up lod required for
# lookup_table_op
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
assert
feed_target_names
[
0
]
==
'firstw'
assert
feed_target_names
[
1
]
==
'secondw'
assert
feed_target_names
[
2
]
==
'thirdw'
assert
feed_target_names
[
3
]
==
'forthw'
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
first_word
,
feed_target_names
[
1
]:
second_word
,
feed_target_names
[
2
]:
third_word
,
feed_target_names
[
3
]:
fourth_word
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
def
train
(
use_cuda
,
is_sparse
,
parallel
,
save_dirname
):
def
train
(
use_cuda
,
is_sparse
,
is_parallel
,
save_dirname
):
PASS_NUM
=
100
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
...
...
@@ -130,7 +85,7 @@ def train(use_cuda, is_sparse, parallel, save_dirname):
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
not
parallel
:
if
not
is_
parallel
:
avg_cost
,
predict_word
=
__network__
(
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])
else
:
...
...
@@ -176,11 +131,67 @@ def train(use_cuda, is_sparse, parallel, save_dirname):
raise
AssertionError
(
"Cost is too large {0:2.2}"
.
format
(
avg_cost_np
[
0
]))
def
main
(
use_cuda
,
is_sparse
,
parallel
):
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
# Setup inputs, by creating 4 words, the lod of which should be [0, 1]
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
assert
feed_target_names
[
0
]
==
'firstw'
assert
feed_target_names
[
1
]
==
'secondw'
assert
feed_target_names
[
2
]
==
'thirdw'
assert
feed_target_names
[
3
]
==
'forthw'
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
first_word
,
feed_target_names
[
1
]:
second_word
,
feed_target_names
[
2
]:
third_word
,
feed_target_names
[
3
]:
fourth_word
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
def
main
(
use_cuda
,
is_sparse
,
is_parallel
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_dirname
=
"word2vec.inference.model"
train
(
use_cuda
,
is_sparse
,
parallel
,
save_dirname
)
if
not
is_parallel
:
save_dirname
=
"word2vec.inference.model"
else
:
save_dirname
=
None
train
(
use_cuda
,
is_sparse
,
is_parallel
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
...
...
@@ -193,10 +204,10 @@ class W2VTest(unittest.TestCase):
pass
def
inject_test_method
(
use_cuda
,
is_sparse
,
parallel
):
def
inject_test_method
(
use_cuda
,
is_sparse
,
is_
parallel
):
fn_name
=
"test_{0}_{1}_{2}"
.
format
(
"cuda"
if
use_cuda
else
"cpu"
,
"sparse"
if
is_sparse
else
"dense"
,
"parallel"
if
parallel
else
"normal"
)
if
is_
parallel
else
"normal"
)
def
__impl__
(
*
args
,
**
kwargs
):
prog
=
fluid
.
Program
()
...
...
@@ -204,10 +215,12 @@ def inject_test_method(use_cuda, is_sparse, parallel):
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
,
parallel
=
parallel
)
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
,
is_parallel
=
is_parallel
)
# run only 2 cases: use_cuda is either True or False
if
is_sparse
==
False
and
parallel
==
False
:
if
use_cuda
and
is_sparse
:
fn
=
__impl__
else
:
# skip the other test when on CI server
...
...
@@ -219,8 +232,8 @@ def inject_test_method(use_cuda, is_sparse, parallel):
for
use_cuda
in
(
False
,
True
):
for
is_sparse
in
(
False
,
True
):
for
parallel
in
(
False
,
True
):
inject_test_method
(
use_cuda
,
is_sparse
,
parallel
)
for
is_
parallel
in
(
False
,
True
):
inject_test_method
(
use_cuda
,
is_sparse
,
is_
parallel
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录