Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
d9f97b02
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9f97b02
编写于
8月 08, 2017
作者:
C
Cao Ying
提交者:
GitHub
8月 08, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3297 from lcy-seso/add_nest_sequence_select
Add a nest sequence select layer.
上级
8c2a0a76
94686c57
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
427 addition
and
1 deletion
+427
-1
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+5
-0
paddle/gserver/layers/SubNestedSequenceLayer.cpp
paddle/gserver/layers/SubNestedSequenceLayer.cpp
+176
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+78
-0
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+20
-0
paddle/parameter/Argument.h
paddle/parameter/Argument.h
+24
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+25
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+49
-0
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_select_layers.protostr
...rs/tests/configs/protostr/test_seq_select_layers.protostr
+37
-0
python/paddle/trainer_config_helpers/tests/configs/test_seq_select_layers.py
...er_config_helpers/tests/configs/test_seq_select_layers.py
+11
-0
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
d9f97b02
...
...
@@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:
sub_nested_seq
--------------
.. autoclass:: paddle.v2.layer.sub_nested_seq
:noindex:
Reshaping Layers
================
...
...
paddle/gserver/layers/SubNestedSequenceLayer.cpp
0 → 100644
浏览文件 @
d9f97b02
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
class
SubNestedSequenceLayer
:
public
Layer
{
public:
explicit
SubNestedSequenceLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
private:
/*
* This functions generates the indices of rows in a batch according to the
* indices of selected sub-sequence in each sequence.
*
* Examples:
* selectedIndices:
* [
* [0, 1, -1],
* [0, 1, 2],
* [0, -1, -1],
* [0, 2, 3],
* ]
* inputSeqInfo:
* [
* [0,3,4],
* [4,5,7,10,15],
* [15,20],
* [20,22,23,25,28]
* ]
*
* ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
* 16,17,18,19,20,21,22,23,24,25,26,27]
*/
void
calSelectedCols
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
);
// if the second input of this layer is on GPU memory, copy it to CPU memory.
MatrixPtr
selIdsCpu_
;
// reorganized sequenceStartPositions and subSequenceStartPositions
// into a 2d vector to facilitate the sequence selection process.
std
::
vector
<
std
::
vector
<
int
>>
inputSeqInfoVec_
;
// the final selected row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory.
IVectorPtr
rowIndice_
;
std
::
vector
<
int
>
selectedRows_
;
};
REGISTER_LAYER
(
sub_nested_seq
,
SubNestedSequenceLayer
);
bool
SubNestedSequenceLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
2U
,
inputLayers_
.
size
());
setNeedSequenceInfo
(
false
);
return
true
;
}
void
SubNestedSequenceLayer
::
calSelectedCols
(
const
MatrixPtr
selectedIndices
,
const
std
::
vector
<
std
::
vector
<
int
>>&
inputSeqInfo
)
{
selectedRows_
.
clear
();
std
::
vector
<
int
>
outSeqStartInfo
(
1
,
0
);
std
::
vector
<
int
>
outSubSeqStartInfo
(
1
,
0
);
size_t
seqNum
=
selectedIndices
->
getHeight
();
size_t
beamSize
=
selectedIndices
->
getWidth
();
for
(
size_t
i
=
0
;
i
<
seqNum
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
beamSize
;
++
j
)
{
if
(
selectedIndices
->
getElement
(
i
,
j
)
==
-
1.
)
break
;
int
selSubSeqIdx
=
selectedIndices
->
getElement
(
i
,
j
);
CHECK_GT
(
inputSeqInfoVec_
[
i
].
size
()
-
1
,
selSubSeqIdx
);
size_t
subSeqLen
=
inputSeqInfoVec_
[
i
][
selSubSeqIdx
+
1
]
-
inputSeqInfoVec_
[
i
][
selSubSeqIdx
];
for
(
size_t
k
=
0
;
k
<
subSeqLen
;
++
k
)
selectedRows_
.
push_back
(
inputSeqInfoVec_
[
i
][
selSubSeqIdx
]
+
k
);
outSubSeqStartInfo
.
push_back
(
outSubSeqStartInfo
.
back
()
+
subSeqLen
);
}
outSeqStartInfo
.
push_back
(
outSubSeqStartInfo
.
back
());
}
if
(
useGpu_
)
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
size
(),
useGpu_
);
rowIndice_
->
copyFrom
(
selectedRows_
.
data
(),
selectedRows_
.
size
());
}
else
{
rowIndice_
=
IVector
::
create
(
selectedRows_
.
data
(),
selectedRows_
.
size
(),
useGpu_
);
}
// create the sequence information for the output.
ICpuGpuVector
::
resizeOrCreate
(
output_
.
sequenceStartPositions
,
outSeqStartInfo
.
size
(),
false
);
output_
.
sequenceStartPositions
->
copyFrom
(
outSeqStartInfo
.
data
(),
outSeqStartInfo
.
size
(),
false
);
ICpuGpuVector
::
resizeOrCreate
(
output_
.
subSequenceStartPositions
,
outSubSeqStartInfo
.
size
(),
false
);
output_
.
subSequenceStartPositions
->
copyFrom
(
outSubSeqStartInfo
.
data
(),
outSubSeqStartInfo
.
size
(),
false
);
}
void
SubNestedSequenceLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
Argument
&
inputSeq
=
getInput
(
0
);
CHECK
(
inputSeq
.
hasSubseq
())
<<
"The first input of SubNestSequence layer "
<<
"must be a nested sequence."
;
const
MatrixPtr
selectedIndices
=
getInputValue
(
1
);
CHECK_EQ
(
inputSeq
.
getNumSequences
(),
selectedIndices
->
getHeight
());
if
(
dynamic_cast
<
GpuMatrix
*>
(
selectedIndices
.
get
()))
{
/*
* Currently, the second input for this layer is generated by
* kmax_sequence_score_layer whose output is always stored on CPU,
* or a data_layer which canbe on GPU.
*
* If the second input is on GPU, copy it to CPU memory, because this
* input always uses very few memory, and operations related to it are
* all logic control, not computations.
*/
Matrix
::
resizeOrCreate
(
selIdsCpu_
,
selectedIndices
->
getHeight
(),
selectedIndices
->
getWidth
(),
false
/* trans */
,
false
/* useGpu */
);
selIdsCpu_
->
copyFrom
(
*
selectedIndices
);
}
else
{
selIdsCpu_
=
selectedIndices
;
}
Argument
::
reorganizeSeqInfo
(
inputSeq
.
sequenceStartPositions
,
inputSeq
.
subSequenceStartPositions
,
inputSeqInfoVec_
);
calSelectedCols
(
selIdsCpu_
,
inputSeqInfoVec_
);
resetOutput
(
selectedRows_
.
size
(),
getSize
());
getOutputValue
()
->
selectRows
(
*
getInputValue
(
0
),
*
rowIndice_
);
}
void
SubNestedSequenceLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
MatrixPtr
inputSeqGrad
=
getInputGrad
(
0
);
MatrixPtr
outputGrad
=
getOutputGrad
();
if
(
inputSeqGrad
)
outputGrad
->
addToRows
(
*
inputSeqGrad
,
*
rowIndice_
);
}
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
d9f97b02
...
...
@@ -1899,6 +1899,84 @@ TEST(Layer, CropLayer) {
}
}
vector
<
real
>
randSampling
(
real
range
,
int
n
)
{
CHECK_GE
(
range
,
n
);
vector
<
real
>
num
(
range
);
iota
(
begin
(
num
),
end
(
num
),
0.
);
if
(
range
==
n
)
return
num
;
random_shuffle
(
begin
(
num
),
end
(
num
));
num
.
resize
(
n
);
sort
(
begin
(
num
),
end
(
num
));
return
num
;
}
TEST
(
Layer
,
SubNestedSequenceLayer
)
{
// layer size is not crutial for this layer,
// so use a small layer size in unittest
const
int
layerSize
=
4
;
const
int
maxSeqNum
=
50
;
const
int
maxSeqLen
=
50
;
const
int
maxBeamSize
=
32
;
srand
((
size_t
)(
time
(
NULL
)));
int
beamSize
=
1
+
(
rand
()
%
maxBeamSize
);
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"sub_nested_seq"
);
config
.
layerConfig
.
set_name
(
"sub_nested_seq_layer"
);
config
.
layerConfig
.
set_size
(
layerSize
);
int
seqNum
=
1
+
(
rand
()
%
maxSeqNum
);
// sequence information for the first input, it is a nested sequence
vector
<
int
>
seqStartPos
(
seqNum
+
1
,
0
);
vector
<
int
>
subSeqStartPos
(
1
,
0
);
// selected indices
MatrixPtr
selectedIndices
=
Matrix
::
create
(
seqNum
,
beamSize
,
false
,
false
);
selectedIndices
->
one
();
selectedIndices
->
mulScalar
(
-
1.
);
real
*
indicesData
=
selectedIndices
->
getData
();
for
(
int
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
subSeqNum
=
1
+
(
rand
()
%
maxSeqNum
);
for
(
int
j
=
0
;
j
<
subSeqNum
;
++
j
)
{
subSeqStartPos
.
push_back
(
subSeqStartPos
.
back
()
+
(
1
+
(
rand
()
%
maxSeqLen
)));
}
vector
<
real
>
selSeqs
=
randSampling
(
static_cast
<
real
>
(
subSeqNum
),
min
(
beamSize
,
subSeqNum
));
memcpy
(
indicesData
+
(
i
*
beamSize
),
selSeqs
.
data
(),
selSeqs
.
size
()
*
sizeof
(
real
));
seqStartPos
[
i
+
1
]
=
subSeqStartPos
.
back
();
}
MatrixPtr
seqInputPtr
=
Matrix
::
create
(
seqStartPos
.
back
(),
layerSize
,
false
,
false
);
seqInputPtr
->
randomizeUniform
();
config
.
inputDefs
.
push_back
({
INPUT_SELF_DEFINE_DATA
,
"nested_seq_input"
,
seqInputPtr
,
seqStartPos
,
subSeqStartPos
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
(
{
INPUT_SELF_DEFINE_DATA
,
"selected_indices"
,
selectedIndices
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"sub_nested_seq"
,
/* batchSize */
seqNum
,
/* trans */
false
,
/* useGpu*/
useGpu
,
/* useWeight */
false
);
}
}
TEST
(
Layer
,
ClipLayer
)
{
const
size_t
batchSize
=
128
;
const
size_t
size
=
512
;
...
...
paddle/parameter/Argument.cpp
浏览文件 @
d9f97b02
...
...
@@ -666,4 +666,24 @@ void Argument::subArgFrom(const Argument& input,
}
}
void
Argument
::
reorganizeSeqInfo
(
const
ICpuGpuVectorPtr
seqStartPos
,
const
ICpuGpuVectorPtr
subSeqStartPos
,
std
::
vector
<
std
::
vector
<
int
>>&
reorganizedSeqInfo
)
{
int
*
seqStarts
=
seqStartPos
->
getMutableData
(
false
);
int
*
subSeqStarts
=
subSeqStartPos
->
getMutableData
(
false
);
int
seqNum
=
seqStartPos
->
getSize
()
-
1
;
reorganizedSeqInfo
.
resize
(
seqNum
,
std
::
vector
<
int
>
());
int
seqIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
subSeqStartPos
->
getSize
();
++
i
)
{
reorganizedSeqInfo
[
seqIdx
].
push_back
(
subSeqStarts
[
i
]);
if
(
subSeqStarts
[
i
]
==
seqStarts
[
seqIdx
+
1
])
{
seqIdx
++
;
if
(
seqIdx
==
seqNum
)
return
;
reorganizedSeqInfo
[
seqIdx
].
push_back
(
subSeqStarts
[
i
]);
}
}
}
}
// namespace paddle
paddle/parameter/Argument.h
浏览文件 @
d9f97b02
...
...
@@ -317,6 +317,30 @@ struct Argument {
*/
void
printValueString
(
std
::
ostream
&
stream
,
const
std
::
string
&
prefix
=
""
)
const
;
/**
* @brief reorganizeSeqInfo will reorganize sequenceStartPositions and
* subSequenceStartPositions into a 2 dimensional arrary: reorganizedSeqInfo.
*
* @param seqStartPos: sequenceStartPositions of an Argument.
* @param subSeqStartPos: subSequenceStartPositions of an Argument.
* @param the reorganized sequence start position information.
*
* Examples:
* seqStartPos: [0, 4, 15, 20, 28]
* subSeqStartPos: [0, 3, 4, 5, 7, 10, 15, 20, 22, 23, 25, 28]
* reorganizedSeqInfo:
* [
* [0,3,4],
* [4,5,7,10,15],
* [15,20],
* [20,22,23,25,28]
* ]
*/
static
void
reorganizeSeqInfo
(
const
ICpuGpuVectorPtr
seqStartPos
,
const
ICpuGpuVectorPtr
subSeqStartPos
,
std
::
vector
<
std
::
vector
<
int
>>&
reorganizedSeqInfo
);
};
}
// namespace paddle
python/paddle/trainer/config_parser.py
浏览文件 @
d9f97b02
...
...
@@ -2657,6 +2657,31 @@ class SubSequenceLayer(LayerBase):
self
.
create_bias_parameter
(
bias
,
size
)
@
config_layer
(
'sub_nested_seq'
)
class
SubNestedSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
selected_indices
,
bias
=
False
,
**
xargs
):
if
isinstance
(
inputs
,
list
):
assert
len
(
inputs
)
==
1
,
(
'the first input of sub_nested_seq '
'layer is a single nested sequence.'
)
inputs
=
inputs
[
0
]
if
isinstance
(
selected_indices
,
list
):
assert
len
(
selected_indices
)
==
1
,
(
'the second input of '
'sub_nested_seq layer is a single layer which is a '
'set of selected indices.'
)
selected_indices
=
selected_indices
[
0
]
super
(
SubNestedSequenceLayer
,
self
).
__init__
(
name
,
'sub_nested_seq'
,
0
,
inputs
=
[
inputs
,
selected_indices
],
**
xargs
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
self
.
set_layer_size
(
size
)
@
config_layer
(
'out_prod'
)
class
OuterProdLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
d9f97b02
...
...
@@ -129,6 +129,7 @@ __all__ = [
'prelu_layer'
,
'gated_unit_layer'
,
'crop_layer'
,
'sub_nested_seq_layer'
,
'clip_layer'
,
'slice_projection'
,
]
...
...
@@ -224,6 +225,7 @@ class LayerType(object):
PRELU
=
'prelu'
CROP_LAYER
=
'crop'
SUB_NESTED_SEQ
=
'sub_nested_seq'
CLIP_LAYER
=
'clip'
@
staticmethod
...
...
@@ -6088,6 +6090,53 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
size
=
l
.
config
.
size
)
@
wrap_name_default
()
@
layer_support
()
def
sub_nested_seq_layer
(
input
,
selected_indices
,
name
=
None
):
"""
The sub_nested_seq_layer accepts two inputs: the first one is a nested
sequence; the second one is a set of selceted indices in the nested sequence.
Then sub_nest_seq_layer trims the first nested sequence input according
to the selected indices to form a new output. This layer is useful in
beam training.
The example usage is:
.. code-block:: python
sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
:param input: A nested sequence.
:type input: LayerOutput
:param selected_indices: a set of sequence indices in the nested sequence.
:type input: LayerOutput
:param name: name of this layer.
:type name: basestring
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
),
(
'The first input of '
'sub_nested_seq_layer must be a Paddle layer.'
)
assert
isinstance
(
selected_indices
,
LayerOutput
),
(
'The second input of '
'sub_nested_seq_layer must be a Paddle layer.'
)
l
=
Layer
(
inputs
=
input
.
name
,
selected_indices
=
selected_indices
.
name
,
name
=
name
,
type
=
LayerType
.
SUB_NESTED_SEQ
)
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
SUB_NESTED_SEQ
,
parents
=
input
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"clip"
)
def
clip_layer
(
input
,
min
,
max
,
name
=
None
):
"""
...
...
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
d9f97b02
...
...
@@ -7,6 +7,7 @@ test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight
test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
)
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_seq_select_layers
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_select_layers.protostr
0 → 100644
浏览文件 @
d9f97b02
type: "nn"
layers {
name: "input_seq"
type: "data"
size: 300
active_type: ""
}
layers {
name: "input"
type: "data"
size: 5
active_type: ""
}
layers {
name: "__sub_nested_seq_layer_0__"
type: "sub_nested_seq"
size: 300
active_type: ""
inputs {
input_layer_name: "input_seq"
}
inputs {
input_layer_name: "input"
}
}
input_layer_names: "input_seq"
output_layer_names: "__sub_nested_seq_layer_0__"
sub_models {
name: "root"
layer_names: "input_seq"
layer_names: "input"
layer_names: "__sub_nested_seq_layer_0__"
input_layer_names: "input_seq"
output_layer_names: "__sub_nested_seq_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_seq_select_layers.py
0 → 100644
浏览文件 @
d9f97b02
#!/usr/bin/env python
#coding=utf-8
from
paddle.trainer_config_helpers
import
*
beam_size
=
5
data
=
data_layer
(
name
=
'input_seq'
,
size
=
300
)
selected_ids
=
data_layer
(
name
=
'input'
,
size
=
beam_size
)
sub_nest_seq
=
sub_nested_seq_layer
(
input
=
data
,
selected_indices
=
selected_ids
)
outputs
(
sub_nest_seq
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录