提交 d9a305cb 编写于 作者: D dangqingqing

Update code and fix conflicts

...@@ -21,7 +21,7 @@ third_party/ ...@@ -21,7 +21,7 @@ third_party/
cmake-build-* cmake-build-*
# generated while compiling # generated while compiling
python/paddle/v2/framework/core.so python/paddle/v2/fluid/core.so
paddle/pybind/pybind.h paddle/pybind/pybind.h
CMakeFiles CMakeFiles
cmake_install.cmake cmake_install.cmake
......
## Evaluator Design
### The Problem
During training or serving, we provide the evaluation function to measure the model performance, e.g., accuracy, precision. In the operator based framework design, the data go through the network pipeline batch by batch. As a result, inside the operator, we only can calculate one minibatch metrics. We need to provide a mechanism to calculate the metrics for each N pass/batch the user wanted.
### Evaluator Design
Currently, every operation is expressed in the graph. we divide the evaluator process into three steps.
1. Initialize the metric state and add it into the block.
2. Calculate the statistic of the metric state in every mini-batch. The single operator is only responsible for calculating necessary statistics for one mini-batch. For example, accuracy operator only calculate a minibatch data if run once.
3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices.
### Implementation
This design is shown in python API.
Each metric operator need to caculate the metric statistic and return the batch aware states, Python side responsible for accumulate the states for each pass.
```python
class Evaluator(object):
"""
Evaluator Base class.
"""
def __init__(self, name, **kwargs):
"""
Different evaluator may has different metric states. E.g, Accuracy need two variables, total and right sample counts.
Auc need four variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives`. So every evaluator should create its needed variables and append to main_program
The initialization of Evaluator should be responsible for:
create metric states and append to the main_program
"""
pass
def _update_ops(self, input, label, **kwargs)
"""
Add mini-batch evaluator caculate operators to the main_program.
Add increment operator to accumulate the metric states.
"""
def reset(self, executor, reset_program=None):
"""
Reset metric states at the begin of each pass/user specified batch number.
Execute the reset_program to reset the states.
"""
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
Execute the eval_program and return the result.
"""
return eval_result
```
...@@ -121,6 +121,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix mat, ...@@ -121,6 +121,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix mat,
paddle_matrix paddle_matrix_create_sparse( paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) { uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) {
#ifndef PADDLE_MOBILE_INFERENCE
auto ptr = new paddle::capi::CMatrix(); auto ptr = new paddle::capi::CMatrix();
ptr->mat = paddle::Matrix::createSparseMatrix( ptr->mat = paddle::Matrix::createSparseMatrix(
height, height,
...@@ -131,6 +132,9 @@ paddle_matrix paddle_matrix_create_sparse( ...@@ -131,6 +132,9 @@ paddle_matrix paddle_matrix_create_sparse(
false, false,
useGpu); useGpu);
return ptr; return ptr;
#else
return nullptr;
#endif
} }
paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat, paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
...@@ -140,6 +144,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat, ...@@ -140,6 +144,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
uint64_t colSize, uint64_t colSize,
float* valueArray, float* valueArray,
uint64_t valueSize) { uint64_t valueSize) {
#ifndef PADDLE_MOBILE_INFERENCE
if (mat == nullptr) return kPD_NULLPTR; if (mat == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat); auto ptr = cast(mat);
if (rowArray == nullptr || colArray == nullptr || if (rowArray == nullptr || colArray == nullptr ||
...@@ -160,4 +165,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat, ...@@ -160,4 +165,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
} else { } else {
return kPD_NOT_SUPPORTED; return kPD_NOT_SUPPORTED;
} }
#else
return kPD_NOT_SUPPORTED;
#endif
} }
...@@ -48,6 +48,7 @@ PD_API paddle_matrix paddle_matrix_create(uint64_t height, ...@@ -48,6 +48,7 @@ PD_API paddle_matrix paddle_matrix_create(uint64_t height,
* @param isBinary is binary (either 1 or 0 in matrix) or not. * @param isBinary is binary (either 1 or 0 in matrix) or not.
* @param useGpu is using GPU or not. * @param useGpu is using GPU or not.
* @return paddle_matrix. * @return paddle_matrix.
* @note Mobile inference does not support this interface.
*/ */
PD_API paddle_matrix paddle_matrix_create_sparse( PD_API paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu); uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu);
...@@ -129,6 +130,7 @@ PD_API paddle_error paddle_matrix_get_shape(paddle_matrix mat, ...@@ -129,6 +130,7 @@ PD_API paddle_error paddle_matrix_get_shape(paddle_matrix mat,
* NULL if the matrix is binary. * NULL if the matrix is binary.
* @param [in] valueSize length of value array. Zero if the matrix is binary. * @param [in] valueSize length of value array. Zero if the matrix is binary.
* @return paddle_error * @return paddle_error
* @note Mobile inference does not support this interface.
*/ */
PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat, PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
int* rowArray, int* rowArray,
......
...@@ -27,7 +27,9 @@ if(WITH_GPU) ...@@ -27,7 +27,9 @@ if(WITH_GPU)
set_source_files_properties(${CUDA_CXX_SOURCES} set_source_files_properties(${CUDA_CXX_SOURCES}
PROPERTIES COMPILE_FLAGS "-D__NVCC__") PROPERTIES COMPILE_FLAGS "-D__NVCC__")
else() else()
if (NOT MOBILE_INFERENCE)
set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc) set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc)
endif()
endif() endif()
set(CUDA_CU_SOURCES set(CUDA_CU_SOURCES
......
...@@ -18,7 +18,7 @@ limitations under the License. */ ...@@ -18,7 +18,7 @@ limitations under the License. */
#include "hl_base.h" #include "hl_base.h"
/** /**
* @brief Maximum pool forward. * @brief Maximum pool forward with Mask output.
* *
* @param[in] frameCnt batch size of input image. * @param[in] frameCnt batch size of input image.
* @param[in] inputData input data. * @param[in] inputData input data.
...@@ -35,7 +35,7 @@ limitations under the License. */ ...@@ -35,7 +35,7 @@ limitations under the License. */
* @param[in] paddingW padding width. * @param[in] paddingW padding width.
* @param[out] tgtData output data. * @param[out] tgtData output data.
* @param[in] tgtStride stride between output data samples. * @param[in] tgtStride stride between output data samples.
* * @param[out] maskData the location indices of select max data.
*/ */
extern void hl_maxpool_forward(const int frameCnt, extern void hl_maxpool_forward(const int frameCnt,
const real* inputData, const real* inputData,
...@@ -51,7 +51,8 @@ extern void hl_maxpool_forward(const int frameCnt, ...@@ -51,7 +51,8 @@ extern void hl_maxpool_forward(const int frameCnt,
const int paddingH, const int paddingH,
const int paddingW, const int paddingW,
real* tgtData, real* tgtData,
const int tgtStride); const int tgtStride,
real* maskData = NULL);
/** /**
* @brief Maximum pool backward. * @brief Maximum pool backward.
......
...@@ -31,7 +31,8 @@ inline void hl_maxpool_forward(const int frameCnt, ...@@ -31,7 +31,8 @@ inline void hl_maxpool_forward(const int frameCnt,
const int paddingH, const int paddingH,
const int paddingW, const int paddingW,
real* tgtData, real* tgtData,
const int tgtStride) {} const int tgtStride,
real* MaskData) {}
inline void hl_maxpool_backward(const int frameCnt, inline void hl_maxpool_backward(const int frameCnt,
const real* inputData, const real* inputData,
......
...@@ -31,7 +31,8 @@ __global__ void KeMaxPoolForward(const int nthreads, ...@@ -31,7 +31,8 @@ __global__ void KeMaxPoolForward(const int nthreads,
const int offsetH, const int offsetH,
const int offsetW, const int offsetW,
real* tgtData, real* tgtData,
const int tgtStride) { const int tgtStride,
real* maskData) {
int index = blockIdx.x * blockDim.x + threadIdx.x; int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < nthreads) { if (index < nthreads) {
int pw = index % pooledW; int pw = index % pooledW;
...@@ -45,16 +46,22 @@ __global__ void KeMaxPoolForward(const int nthreads, ...@@ -45,16 +46,22 @@ __global__ void KeMaxPoolForward(const int nthreads,
hstart = max(hstart, 0); hstart = max(hstart, 0);
wstart = max(wstart, 0); wstart = max(wstart, 0);
real maxval = -FLT_MAX; real maxval = -FLT_MAX;
int max_index = -1;
inputData += (frameNum * channels + c) * height * width; inputData += (frameNum * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
if (maxval < inputData[h * width + w]) if (maxval < inputData[h * width + w]) {
maxval = inputData[h * width + w]; max_index = h * width + w;
maxval = inputData[max_index];
}
} }
} }
int tgtIndex = int tgtIndex =
index % (pooledW * pooledH * channels) + frameNum * tgtStride; index % (pooledW * pooledH * channels) + frameNum * tgtStride;
tgtData[tgtIndex] = maxval; tgtData[tgtIndex] = maxval;
if (maskData != NULL) {
maskData[tgtIndex] = max_index;
}
} }
} }
...@@ -72,7 +79,8 @@ void hl_maxpool_forward(const int frameCnt, ...@@ -72,7 +79,8 @@ void hl_maxpool_forward(const int frameCnt,
const int paddingH, const int paddingH,
const int paddingW, const int paddingW,
real* tgtData, real* tgtData,
const int tgtStride) { const int tgtStride,
real* maskData) {
int num_kernels = pooledH * pooledW * channels * frameCnt; int num_kernels = pooledH * pooledW * channels * frameCnt;
int blocks = (num_kernels + 1024 - 1) / 1024; int blocks = (num_kernels + 1024 - 1) / 1024;
dim3 threads(1024, 1); dim3 threads(1024, 1);
...@@ -92,7 +100,8 @@ void hl_maxpool_forward(const int frameCnt, ...@@ -92,7 +100,8 @@ void hl_maxpool_forward(const int frameCnt,
paddingH, paddingH,
paddingW, paddingW,
tgtData, tgtData,
tgtStride); tgtStride,
maskData);
CHECK_SYNC("hl_maxpool_forward failed"); CHECK_SYNC("hl_maxpool_forward failed");
} }
......
...@@ -377,6 +377,12 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad( ...@@ -377,6 +377,12 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
return grad_op_descs; return grad_op_descs;
} }
static BlockDescBind* CreateStepBlock(
ProgramDescBind& program_desc,
std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var,
int step_block_idx);
std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward( std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
ProgramDescBind& program_desc, int block_idx, ProgramDescBind& program_desc, int block_idx,
std::unordered_set<std::string>* no_grad_vars, std::unordered_set<std::string>* no_grad_vars,
...@@ -392,13 +398,13 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward( ...@@ -392,13 +398,13 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
if ((*it)->Type() == "recurrent") { if ((*it)->Type() == "recurrent") {
int step_block_idx = (*it)->GetBlockAttr("step_block"); int step_block_idx = (*it)->GetBlockAttr("step_block");
auto backward_block_op_descs = MakeBlockBackward( BlockDescBind* backward_block = CreateStepBlock(
program_desc, step_block_idx, no_grad_vars, grad_to_var); program_desc, no_grad_vars, grad_to_var, step_block_idx);
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else if ((*it)->Type() == "conditional_block") {
BlockDescBind* backward_block = BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx)); CreateStepBlock(program_desc, no_grad_vars, grad_to_var,
for (auto& ptr : backward_block_op_descs) { (*it)->GetBlockAttr("block"));
backward_block->AppendAllocatedOp(std::move(ptr));
}
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else { } else {
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
...@@ -449,6 +455,21 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward( ...@@ -449,6 +455,21 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
return backward_descs; return backward_descs;
} }
static BlockDescBind* CreateStepBlock(
ProgramDescBind& program_desc,
std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var,
int step_block_idx) {
auto backward_block_op_descs = MakeBlockBackward(program_desc, step_block_idx,
no_grad_vars, grad_to_var);
BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
for (auto& ptr : backward_block_op_descs) {
backward_block->AppendAllocatedOp(move(ptr));
}
return backward_block;
}
ParamGradInfoMap AppendBackward( ParamGradInfoMap AppendBackward(
ProgramDescBind& program_desc, const VarDescBind& target, ProgramDescBind& program_desc, const VarDescBind& target,
const std::unordered_set<std::string>& no_grad_vars) { const std::unordered_set<std::string>& no_grad_vars) {
......
...@@ -27,10 +27,32 @@ inline VarDesc::VarType ToVarType(std::type_index type) { ...@@ -27,10 +27,32 @@ inline VarDesc::VarType ToVarType(std::type_index type) {
return VarDesc_VarType_LOD_RANK_TABLE; return VarDesc_VarType_LOD_RANK_TABLE;
} else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) { } else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) {
return VarDesc_VarType_LOD_TENSOR_ARRAY; return VarDesc_VarType_LOD_TENSOR_ARRAY;
} else if (type.hash_code() == typeid(SelectedRows).hash_code()) {
return VarDesc_VarType_SELECTED_ROWS;
} else { } else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
} }
} }
template <typename Visitor>
inline void VisitVarType(const Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) {
case VarDesc_VarType_LOD_TENSOR:
visitor(var.Get<framework::LoDTensor>());
return;
case VarDesc_VarType_LOD_RANK_TABLE:
visitor(var.Get<LoDRankTable>());
return;
case VarDesc_VarType_LOD_TENSOR_ARRAY:
visitor(var.Get<LoDTensorArray>());
return;
case VarDesc_VarType_SELECTED_ROWS:
visitor(var.Get<SelectedRows>());
return;
default:
PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type()));
}
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -61,6 +61,7 @@ public: ...@@ -61,6 +61,7 @@ public:
// function arguments // function arguments
strides_ = config.get<std::vector<size_t>>("strides"); strides_ = config.get<std::vector<size_t>>("strides");
paddings_ = config.get<std::vector<size_t>>("paddings"); paddings_ = config.get<std::vector<size_t>>("paddings");
dilations_ = config.get<std::vector<size_t>>("dilations");
groups_ = config.get<size_t>("groups"); groups_ = config.get<size_t>("groups");
// number of inputs and outputs // number of inputs and outputs
...@@ -118,6 +119,7 @@ protected: ...@@ -118,6 +119,7 @@ protected:
std::vector<size_t> strides_; std::vector<size_t> strides_;
std::vector<size_t> paddings_; std::vector<size_t> paddings_;
std::vector<size_t> dilations_;
/// Group size, refer to grouped convolution in /// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the /// Alex Krizhevsky's paper: when group=2, the first half of the
...@@ -133,6 +135,10 @@ protected: ...@@ -133,6 +135,10 @@ protected:
inline int paddingW() const { return paddings_[1]; } inline int paddingW() const { return paddings_[1]; }
inline int dilationH() const { return dilations_[0]; }
inline int dilationW() const { return dilations_[1]; }
// A temporary memory in convolution calculation. // A temporary memory in convolution calculation.
MemoryHandlePtr memory_; MemoryHandlePtr memory_;
......
...@@ -79,45 +79,59 @@ void Convolution(const std::string& conv1, ...@@ -79,45 +79,59 @@ void Convolution(const std::string& conv1,
if (outputChannels < inputChannels) continue; if (outputChannels < inputChannels) continue;
for (size_t stride : {1, 2}) { for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) { for (size_t padding : {0, 1}) {
if (padding >= filterSize) break; for (size_t dilation : {1, 3}) {
if (padding >= filterSize) break;
size_t filterS = (filterSize - 1) * dilation + 1;
// NNPACK only supports stride = 1 if batchSize > 1 if (inputSize + 2 * padding < filterS) break;
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
size_t outputSize = if ((conv1 == "NaiveConv-CPU" || conv2 == "NaiveConv-CPU" ||
(inputSize - filterSize + 2 * padding + stride) / stride; conv1 == "NNPACKConv-CPU" ||
VLOG(3) << " batchSize=" << batchSize conv2 == "NNPACKConv-CPU") &&
<< " inputChannels=" << inputChannels dilation > 1)
<< " inputHeight=" << inputSize break;
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding}; // NNPACK only supports stride = 1 if batchSize > 1
std::vector<size_t> strides = {stride, stride}; if ((conv1 == "NNPACKConv-CPU" ||
Compare2Function<DType1, DType2> test( conv2 == "NNPACKConv-CPU") &&
conv1, batchSize > 1 && stride > 1)
conv2, break;
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{ size_t outputSize =
batchSize, inputChannels, inputSize, inputSize}; (inputSize - filterS + 2 * padding + stride) / stride;
TensorShape filter{ VLOG(3) << " batchSize=" << batchSize
outputChannels, inputChannels, filterSize, filterSize}; << " inputChannels=" << inputChannels
TensorShape output{ << " inputHeight=" << inputSize
batchSize, outputChannels, outputSize, outputSize}; << " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
function(test, input, filter, output); std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {dilation, dilation};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
} }
} }
} }
...@@ -144,6 +158,7 @@ void Convolution2(const std::string& conv1, ...@@ -144,6 +158,7 @@ void Convolution2(const std::string& conv1,
for (size_t outputChannels : {7}) { for (size_t outputChannels : {7}) {
size_t stride = 1; size_t stride = 1;
size_t padding = 0; size_t padding = 0;
size_t dilation = 1;
size_t outputHeight = size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) / (inputHeight - filterHeight + 2 * padding + stride) /
stride; stride;
...@@ -162,6 +177,7 @@ void Convolution2(const std::string& conv1, ...@@ -162,6 +177,7 @@ void Convolution2(const std::string& conv1,
std::vector<size_t> paddings = {padding, padding}; std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride}; std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {dilation, dilation};
Compare2Function<DType1, DType2> test( Compare2Function<DType1, DType2> test(
conv1, conv1,
conv2, conv2,
...@@ -169,6 +185,7 @@ void Convolution2(const std::string& conv1, ...@@ -169,6 +185,7 @@ void Convolution2(const std::string& conv1,
.set("paddings", paddings) .set("paddings", paddings)
.set("strides", strides) .set("strides", strides)
.set("groups", (size_t)1) .set("groups", (size_t)1)
.set("dilations", dilations)
.set("algo", (std::string) "auto")); .set("algo", (std::string) "auto"));
TensorShape input{ TensorShape input{
...@@ -223,6 +240,7 @@ void DepthwiseConvolution(const std::string& conv1, ...@@ -223,6 +240,7 @@ void DepthwiseConvolution(const std::string& conv1,
std::vector<size_t> paddings = {padding, padding}; std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride}; std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {1, 1};
size_t groups = inputChannels; size_t groups = inputChannels;
Compare2Function<DType1, DType2> test( Compare2Function<DType1, DType2> test(
conv1, conv1,
...@@ -231,6 +249,7 @@ void DepthwiseConvolution(const std::string& conv1, ...@@ -231,6 +249,7 @@ void DepthwiseConvolution(const std::string& conv1,
.set("paddings", paddings) .set("paddings", paddings)
.set("strides", strides) .set("strides", strides)
.set("groups", groups) .set("groups", groups)
.set("dilations", dilations)
.set("algo", (std::string) "auto")); .set("algo", (std::string) "auto"));
TensorShape input{ TensorShape input{
......
...@@ -100,7 +100,9 @@ public: ...@@ -100,7 +100,9 @@ public:
strideH(), strideH(),
strideW(), strideW(),
paddingH(), paddingH(),
paddingW()); paddingW(),
dilationH(),
dilationW());
} else { } else {
colData = inputData + g * inputOffset; colData = inputData + g * inputOffset;
} }
...@@ -223,7 +225,9 @@ public: ...@@ -223,7 +225,9 @@ public:
strideH(), strideH(),
strideW(), strideW(),
paddingH(), paddingH(),
paddingW()); paddingW(),
dilationH(),
dilationW());
} }
} }
inputGrad += inputChannels * inputHeight * inputWidth; inputGrad += inputChannels * inputHeight * inputWidth;
...@@ -310,7 +314,9 @@ public: ...@@ -310,7 +314,9 @@ public:
strideH(), strideH(),
strideW(), strideW(),
paddingH(), paddingH(),
paddingW()); paddingW(),
dilationH(),
dilationW());
} else { } else {
colData = inputData + g * inputOffset; colData = inputData + g * inputOffset;
} }
......
...@@ -78,7 +78,9 @@ public: ...@@ -78,7 +78,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth); int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1);
}; };
template <ColFormat Format, DeviceType Device, class T> template <ColFormat Format, DeviceType Device, class T>
...@@ -91,7 +93,9 @@ public: ...@@ -91,7 +93,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth); int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1);
}; };
} // namespace paddle } // namespace paddle
...@@ -31,7 +31,9 @@ public: ...@@ -31,7 +31,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -47,8 +49,8 @@ public: ...@@ -47,8 +49,8 @@ public:
int c_im = c / filterWidth / filterHeight; int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) { for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) { for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset; int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset; int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) < 0 || if ((imRowIdx - paddingHeight) < 0 ||
(imRowIdx - paddingHeight) >= inputHeight || (imRowIdx - paddingHeight) >= inputHeight ||
(imColIdx - paddingWidth) < 0 || (imColIdx - paddingWidth) < 0 ||
...@@ -81,7 +83,9 @@ public: ...@@ -81,7 +83,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -97,8 +101,8 @@ public: ...@@ -97,8 +101,8 @@ public:
int c_im = c / filterWidth / filterHeight; int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) { for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) { for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset; int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset; int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) >= 0 && if ((imRowIdx - paddingHeight) >= 0 &&
(imRowIdx - paddingHeight) < inputHeight && (imRowIdx - paddingHeight) < inputHeight &&
(imColIdx - paddingWidth) >= 0 && (imColIdx - paddingWidth) >= 0 &&
...@@ -134,7 +138,9 @@ public: ...@@ -134,7 +138,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -147,9 +153,10 @@ public: ...@@ -147,9 +153,10 @@ public:
for (int channel = 0; channel < inputChannels; ++channel) { for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) { for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) { for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset = int imRowOffset = outputH * strideHeight +
outputH * strideHeight + filterH - paddingHeight; filterH * dilationHeight - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth; int imColOffset = outputW * strideWidth +
filterW * dilationWidth - paddingWidth;
int colDataOffset = int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels + (((outputH * outputWidth + outputW) * inputChannels +
channel) * channel) *
...@@ -189,7 +196,9 @@ public: ...@@ -189,7 +196,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -202,9 +211,10 @@ public: ...@@ -202,9 +211,10 @@ public:
for (int channel = 0; channel < inputChannels; ++channel) { for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) { for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) { for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset = int imRowOffset = outputH * strideHeight +
outputH * strideHeight + filterH - paddingHeight; filterH * dilationHeight - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth; int imColOffset = outputW * strideWidth +
filterW * dilationWidth - paddingWidth;
int colDataOffset = int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels + (((outputH * outputWidth + outputW) * inputChannels +
channel) * channel) *
......
...@@ -28,6 +28,8 @@ __global__ void im2col(const T* data_im, ...@@ -28,6 +28,8 @@ __global__ void im2col(const T* data_im,
int strideW, int strideW,
int paddingH, int paddingH,
int paddingW, int paddingW,
int dilationH,
int dilationW,
int height_col, int height_col,
int width_col, int width_col,
T* data_col) { T* data_col) {
...@@ -44,8 +46,8 @@ __global__ void im2col(const T* data_im, ...@@ -44,8 +46,8 @@ __global__ void im2col(const T* data_im,
data_col += (channel_out * height_col + h_out) * width_col + w_out; data_col += (channel_out * height_col + h_out) * width_col + w_out;
for (int i = 0; i < blockH; ++i) { for (int i = 0; i < blockH; ++i) {
for (int j = 0; j < blockW; ++j) { for (int j = 0; j < blockW; ++j) {
int rIdx = int(h_in + i); int rIdx = int(h_in + i * dilationH);
int cIdx = int(w_in + j); int cIdx = int(w_in + j * dilationW);
if ((rIdx - (int)paddingH) >= (int)height || if ((rIdx - (int)paddingH) >= (int)height ||
(rIdx - (int)paddingH) < 0 || (rIdx - (int)paddingH) < 0 ||
(cIdx - (int)paddingW) >= (int)width || (cIdx - (int)paddingW) >= (int)width ||
...@@ -77,7 +79,9 @@ public: ...@@ -77,7 +79,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -102,6 +106,8 @@ public: ...@@ -102,6 +106,8 @@ public:
strideWidth, strideWidth,
paddingHeight, paddingHeight,
paddingWidth, paddingWidth,
dilationHeight,
dilationWidth,
outputHeight, outputHeight,
outputWidth, outputWidth,
colData); colData);
...@@ -121,6 +127,8 @@ __global__ void col2im(size_t n, ...@@ -121,6 +127,8 @@ __global__ void col2im(size_t n,
size_t strideW, size_t strideW,
size_t paddingH, size_t paddingH,
size_t paddingW, size_t paddingW,
size_t dilationH,
size_t dilationW,
size_t height_col, size_t height_col,
size_t width_col, size_t width_col,
T* data_im) { T* data_im) {
...@@ -131,23 +139,34 @@ __global__ void col2im(size_t n, ...@@ -131,23 +139,34 @@ __global__ void col2im(size_t n,
int w = int(index % width); int w = int(index % width);
int h = int((index / width) % height); int h = int((index / width) % height);
int c = int(index / (width * height)); int c = int(index / (width * height));
int filterH = (blockH - 1) * dilationH + 1;
int filterW = (blockW - 1) * dilationW + 1;
if ((w - (int)paddingW) >= 0 && if ((w - (int)paddingW) >= 0 &&
(w - (int)paddingW) < (width - 2 * paddingW) && (w - (int)paddingW) < (width - 2 * paddingW) &&
(h - (int)paddingH) >= 0 && (h - paddingH) < (height - 2 * paddingH)) { (h - (int)paddingH) >= 0 && (h - paddingH) < (height - 2 * paddingH)) {
// compute the start and end of the output // compute the start and end of the output
int w_col_start = int w_col_start =
(w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1; (w < (int)filterW) ? 0 : (w - int(filterW)) / (int)strideW + 1;
int w_col_end = min((int)(w / (int)strideW + 1), (int)(width_col)); int w_col_end = min((int)(w / (int)strideW + 1), (int)(width_col));
int h_col_start = int h_col_start =
(h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1; (h < (int)filterH) ? 0 : (h - (int)filterH) / (int)strideH + 1;
int h_col_end = min(int(h / strideH + 1), int(height_col)); int h_col_end = min(int(h / strideH + 1), int(height_col));
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
// the col location: [c * width * height + h_out, w_out] // the col location: [c * width * height + h_out, w_out]
int c_col = int(c * blockH * blockW) + int h_k = (h - h_col * strideH);
(h - h_col * (int)strideH) * (int)blockW + int w_k = (w - w_col * strideW);
(w - w_col * (int)strideW); if (h_k % dilationH == 0 && w_k % dilationW == 0) {
val += data_col[(c_col * height_col + h_col) * width_col + w_col]; h_k /= dilationH;
w_k /= dilationW;
int c_col =
(((c * blockH + h_k) * blockW + w_k) * height_col + h_col) *
width_col +
w_col;
val += data_col[c_col];
}
} }
} }
h -= paddingH; h -= paddingH;
...@@ -173,7 +192,9 @@ public: ...@@ -173,7 +192,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -205,6 +226,8 @@ public: ...@@ -205,6 +226,8 @@ public:
strideWidth, strideWidth,
paddingHeight, paddingHeight,
paddingWidth, paddingWidth,
dilationHeight,
dilationWidth,
outputHeight, outputHeight,
outputWidth, outputWidth,
imData); imData);
...@@ -229,6 +252,8 @@ __global__ void im2colOCF(const T* imData, ...@@ -229,6 +252,8 @@ __global__ void im2colOCF(const T* imData,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth, int paddingWidth,
int dilationHeight,
int dilationWidth,
int outputHeight, int outputHeight,
int outputWidth) { int outputWidth) {
int swId = blockIdx.x; int swId = blockIdx.x;
...@@ -237,8 +262,10 @@ __global__ void im2colOCF(const T* imData, ...@@ -237,8 +262,10 @@ __global__ void im2colOCF(const T* imData,
channelId += blockDim.z) { channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) { for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) { for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth; int widthOffset =
int heightOffset = idy + shId * strideHeight - paddingHeight; idx * dilationHeight + swId * strideWidth - paddingWidth;
int heightOffset =
idy * dilationWidth + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth + int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth; channelId * inputHeight * inputWidth;
...@@ -273,7 +300,9 @@ public: ...@@ -273,7 +300,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -312,6 +341,8 @@ public: ...@@ -312,6 +341,8 @@ public:
strideWidth, strideWidth,
paddingHeight, paddingHeight,
paddingWidth, paddingWidth,
dilationHeight,
dilationWidth,
outputHeight, outputHeight,
outputWidth); outputWidth);
CHECK_SYNC("Im2ColFunctor GPU failed"); CHECK_SYNC("Im2ColFunctor GPU failed");
...@@ -330,6 +361,8 @@ __global__ void col2imOCF(T* imData, ...@@ -330,6 +361,8 @@ __global__ void col2imOCF(T* imData,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth, int paddingWidth,
int dilationHeight,
int dilationWidth,
int outputHeight, int outputHeight,
int outputWidth) { int outputWidth) {
int swId = blockIdx.x; int swId = blockIdx.x;
...@@ -338,8 +371,10 @@ __global__ void col2imOCF(T* imData, ...@@ -338,8 +371,10 @@ __global__ void col2imOCF(T* imData,
channelId += blockDim.z) { channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) { for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) { for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth; int widthOffset =
int heightOffset = idy + shId * strideHeight - paddingHeight; idx * dilationWidth + swId * strideWidth - paddingWidth;
int heightOffset =
idy * dilationHeight + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth + int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth; channelId * inputHeight * inputWidth;
...@@ -372,7 +407,9 @@ public: ...@@ -372,7 +407,9 @@ public:
int strideHeight, int strideHeight,
int strideWidth, int strideWidth,
int paddingHeight, int paddingHeight,
int paddingWidth) { int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0]; int inputChannels = imShape[0];
int inputHeight = imShape[1]; int inputHeight = imShape[1];
int inputWidth = imShape[2]; int inputWidth = imShape[2];
...@@ -411,6 +448,8 @@ public: ...@@ -411,6 +448,8 @@ public:
strideWidth, strideWidth,
paddingHeight, paddingHeight,
paddingWidth, paddingWidth,
dilationHeight,
dilationWidth,
outputHeight, outputHeight,
outputWidth); outputWidth);
CHECK_SYNC("Col2ImFunctor GPU failed"); CHECK_SYNC("Col2ImFunctor GPU failed");
......
...@@ -29,82 +29,98 @@ void TestIm2ColFunctor() { ...@@ -29,82 +29,98 @@ void TestIm2ColFunctor() {
for (size_t filterWidth : {3, 7}) { for (size_t filterWidth : {3, 7}) {
for (size_t stride : {1, 2}) { for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) { for (size_t padding : {0, 1}) {
if (inputHeight <= filterHeight || inputWidth <= filterWidth) for (size_t dilation : {1, 3}) {
break; size_t filterSizeH = (filterHeight - 1) * dilation + 1;
if (padding >= filterHeight || padding >= filterWidth) break; size_t filterSizeW = (filterWidth - 1) * dilation + 1;
size_t outputHeight = if (inputHeight + 2 * padding < filterSizeH ||
(inputHeight - filterHeight + 2 * padding + stride) / inputWidth + 2 * padding < filterSizeW)
stride; break;
size_t outputWidth = if (padding >= filterSizeH || padding >= filterSizeW) break;
(inputWidth - filterWidth + 2 * padding + stride) / stride; size_t outputHeight =
(inputHeight - filterSizeH + 2 * padding) / stride + 1;
TensorShape imShape = size_t outputWidth =
TensorShape({channels, inputHeight, inputWidth}); (inputWidth - filterSizeW + 2 * padding) / stride + 1;
TensorShape colShape1 = TensorShape({channels,
filterHeight, TensorShape imShape =
filterWidth, TensorShape({channels, inputHeight, inputWidth});
outputHeight, TensorShape colShape1 = TensorShape({channels,
outputWidth}); filterHeight,
TensorShape colShape2 = TensorShape({outputHeight, filterWidth,
outputWidth, outputHeight,
channels, outputWidth});
filterHeight, TensorShape colShape2 = TensorShape({outputHeight,
filterWidth}); outputWidth,
channels,
size_t height = channels * filterHeight * filterWidth; filterHeight,
size_t width = outputHeight * outputWidth; filterWidth});
VectorPtr input1 = Vector::create(imShape.getElements(), false);
VectorPtr input2 = Vector::create(imShape.getElements(), false); size_t height = channels * filterHeight * filterWidth;
MatrixPtr output1 = Matrix::create(height, width, false, false); size_t width = outputHeight * outputWidth;
MatrixPtr output2 = Matrix::create(width, height, false, false); VectorPtr input1 =
input1->uniform(0.001, 1); Vector::create(imShape.getElements(), false);
input2->copyFrom(*input1); VectorPtr input2 =
Vector::create(imShape.getElements(), false);
Im2ColFunctor<kCFO, Device, T> im2Col1; MatrixPtr output1 =
Im2ColFunctor<kOCF, Device, T> im2Col2; Matrix::create(height, width, false, false);
im2Col1(input1->getData(), MatrixPtr output2 =
imShape, Matrix::create(width, height, false, false);
output1->getData(), input1->uniform(0.001, 1);
colShape1, input2->copyFrom(*input1);
stride,
stride, Im2ColFunctor<kCFO, Device, T> im2Col1;
padding, Im2ColFunctor<kOCF, Device, T> im2Col2;
padding); im2Col1(input1->getData(),
im2Col2(input2->getData(), imShape,
imShape, output1->getData(),
output2->getData(), colShape1,
colShape2, stride,
stride, stride,
stride, padding,
padding, padding,
padding); dilation,
dilation);
// The transposition of the result of ColFormat == kCFO im2Col2(input2->getData(),
// is equal to the result of ColFormat == kOCF. imShape,
MatrixPtr test; output2->getData(),
output2->transpose(test, true); colShape2,
autotest::TensorCheckErr(*output1, *test); stride,
stride,
Col2ImFunctor<kCFO, Device, T> col2Im1; padding,
Col2ImFunctor<kOCF, Device, T> col2Im2; padding,
col2Im1(input1->getData(), dilation,
imShape, dilation);
output1->getData(),
colShape1, // The transposition of the result of ColFormat == kCFO
stride, // is equal to the result of ColFormat == kOCF.
stride, MatrixPtr test;
padding, output2->transpose(test, true);
padding); autotest::TensorCheckErr(*output1, *test);
col2Im2(input2->getData(),
imShape, Col2ImFunctor<kCFO, Device, T> col2Im1;
output2->getData(), Col2ImFunctor<kOCF, Device, T> col2Im2;
colShape2,
stride, col2Im1(input1->getData(),
stride, imShape,
padding, output1->getData(),
padding); colShape1,
stride,
autotest::TensorCheckErr(*input1, *input2); stride,
padding,
padding,
dilation,
dilation);
col2Im2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding,
dilation,
dilation);
autotest::TensorCheckErr(*input1, *input2);
}
} }
} }
} }
......
...@@ -85,9 +85,49 @@ if(MOBILE_INFERENCE) ...@@ -85,9 +85,49 @@ if(MOBILE_INFERENCE)
gradientmachines/GradientMachineMode.cpp gradientmachines/GradientMachineMode.cpp
gradientmachines/MultiGradientMachine.cpp) gradientmachines/MultiGradientMachine.cpp)
# Remove useless layers # Remove layers that used in training
list(REMOVE_ITEM GSERVER_SOURCES list(REMOVE_ITEM GSERVER_SOURCES
layers/RecurrentLayerGroup.cpp) layers/RecurrentLayerGroup.cpp
layers/CostLayer.cpp
layers/MultiBoxLossLayer.cpp
layers/WarpCTCLayer.cpp
layers/CTCLayer.cpp
layers/LinearChainCTC.cpp
layers/PrintLayer.cpp)
list(REMOVE_ITEM GSERVER_SOURCES
layers/OuterProdLayer.cpp
layers/SumToOneNormLayer.cpp
layers/ConvShiftLayer.cpp
layers/InterpolationLayer.cpp
layers/AgentLayer.cpp
layers/DotMulOperator.cpp
layers/GruStepLayer.cpp
layers/LstmStepLayer.cpp
layers/ConvexCombinationLayer.cpp
layers/Conv3DLayer.cpp
layers/DeConv3DLayer.cpp
layers/CropLayer.cpp
layers/CrossEntropyOverBeam.cpp
layers/DataNormLayer.cpp
layers/FeatureMapExpandLayer.cpp
layers/HierarchicalSigmoidLayer.cpp
layers/MultinomialSampler.cpp
layers/NCELayer.cpp
layers/KmaxSeqScoreLayer.cpp
layers/MDLstmLayer.cpp
layers/MultiplexLayer.cpp
layers/PadLayer.cpp
layers/Pool3DLayer.cpp
layers/ResizeLayer.cpp
layers/RotateLayer.cpp
layers/RowConvLayer.cpp
layers/RowL2NormLayer.cpp
layers/SamplingIdLayer.cpp
layers/ScaleShiftLayer.cpp
layers/SelectiveFullyConnectedLayer.cpp
layers/SpatialPyramidPoolLayer.cpp
layers/BilinearInterpLayer.cpp
layers/ClipLayer.cpp)
endif() endif()
if(WITH_GPU) if(WITH_GPU)
......
...@@ -16,7 +16,6 @@ limitations under the License. */ ...@@ -16,7 +16,6 @@ limitations under the License. */
#include "NeuralNetwork.h" #include "NeuralNetwork.h"
#include "hl_gpu.h" #include "hl_gpu.h"
#include "paddle/gserver/layers/AgentLayer.h"
#include "paddle/utils/CustomStackTrace.h" #include "paddle/utils/CustomStackTrace.h"
#include "paddle/utils/Logging.h" #include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h" #include "paddle/utils/Stat.h"
...@@ -28,6 +27,7 @@ limitations under the License. */ ...@@ -28,6 +27,7 @@ limitations under the License. */
#ifndef PADDLE_MOBILE_INFERENCE #ifndef PADDLE_MOBILE_INFERENCE
#include "MultiNetwork.h" #include "MultiNetwork.h"
#include "RecurrentGradientMachine.h" #include "RecurrentGradientMachine.h"
#include "paddle/gserver/layers/AgentLayer.h"
#endif #endif
namespace paddle { namespace paddle {
...@@ -192,9 +192,11 @@ void NeuralNetwork::init(const ModelConfig& config, ...@@ -192,9 +192,11 @@ void NeuralNetwork::init(const ModelConfig& config,
void NeuralNetwork::connect(LayerPtr agentLayer, void NeuralNetwork::connect(LayerPtr agentLayer,
LayerPtr realLayer, LayerPtr realLayer,
int height) { int height) {
#ifndef PADDLE_MOBILE_INFERENCE
AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get()); AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
CHECK_NOTNULL(agent); CHECK_NOTNULL(agent);
agent->setRealLayer(realLayer, height); agent->setRealLayer(realLayer, height);
#endif
} }
void NeuralNetwork::connect(std::string agentLayerName, void NeuralNetwork::connect(std::string agentLayerName,
......
...@@ -79,6 +79,10 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -79,6 +79,10 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
for (int i = 0; i < config_.inputs_size(); i++) { for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]}; std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]}; std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
std::vector<size_t> dilations = {(size_t)dilationY_[i],
(size_t)dilation_[i]};
bool useDilation = ((size_t)dilationY_[i] > 1 || (size_t)dilation_[i] > 1);
// Convolution Layer uses the GemmConv function by default. // Convolution Layer uses the GemmConv function by default.
convType = "GemmConv"; convType = "GemmConv";
...@@ -97,13 +101,14 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -97,13 +101,14 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
#if defined(__ARM_NEON__) || defined(__ARM_NEON) #if defined(__ARM_NEON__) || defined(__ARM_NEON)
if ((filterSize_[i] == filterSizeY_[i]) && if ((filterSize_[i] == filterSizeY_[i]) &&
(filterSize_[i] == 3 || filterSize_[i] == 4) && (filterSize_[i] == 3 || filterSize_[i] == 4) &&
(stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2)) { (stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2) &&
!useDilation) {
convType = "NeonDepthwiseConv"; convType = "NeonDepthwiseConv";
} }
#endif #endif
} }
if (FLAGS_use_nnpack && !isDeconv_) { if (FLAGS_use_nnpack && !isDeconv_ && !useDilation) {
createFunction(forward_, createFunction(forward_,
"NNPACKConv", "NNPACKConv",
FuncConfig() FuncConfig()
...@@ -117,6 +122,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -117,6 +122,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig() FuncConfig()
.set("paddings", paddings) .set("paddings", paddings)
.set("strides", strides) .set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i])); .set("groups", (size_t)groups_[i]));
createFunction(backward_, createFunction(backward_,
...@@ -124,6 +130,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -124,6 +130,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig() FuncConfig()
.set("paddings", paddings) .set("paddings", paddings)
.set("strides", strides) .set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i])); .set("groups", (size_t)groups_[i]));
createFunction(backward_, createFunction(backward_,
...@@ -131,6 +138,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -131,6 +138,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig() FuncConfig()
.set("paddings", paddings) .set("paddings", paddings)
.set("strides", strides) .set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i])); .set("groups", (size_t)groups_[i]));
} }
} }
......
...@@ -98,6 +98,7 @@ ClassRegistrar<Layer, LayerConfig> Layer::registrar_; ...@@ -98,6 +98,7 @@ ClassRegistrar<Layer, LayerConfig> Layer::registrar_;
LayerPtr Layer::create(const LayerConfig& config) { LayerPtr Layer::create(const LayerConfig& config) {
std::string type = config.type(); std::string type = config.type();
#ifndef PADDLE_MOBILE_INFERENCE
// NOTE: As following types have illegal character '-', // NOTE: As following types have illegal character '-',
// they can not use REGISTER_LAYER to registrar. // they can not use REGISTER_LAYER to registrar.
// Besides, to fit with old training models, // Besides, to fit with old training models,
...@@ -106,7 +107,6 @@ LayerPtr Layer::create(const LayerConfig& config) { ...@@ -106,7 +107,6 @@ LayerPtr Layer::create(const LayerConfig& config) {
return LayerPtr(new MultiClassCrossEntropy(config)); return LayerPtr(new MultiClassCrossEntropy(config));
else if (type == "rank-cost") else if (type == "rank-cost")
return LayerPtr(new RankingCost(config)); return LayerPtr(new RankingCost(config));
#ifndef PADDLE_MOBILE_INFERENCE
else if (type == "auc-validation") else if (type == "auc-validation")
return LayerPtr(new AucValidation(config)); return LayerPtr(new AucValidation(config));
else if (type == "pnpair-validation") else if (type == "pnpair-validation")
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MaxPoolWithMaskLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
bool MaxPoolWithMaskLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
PoolLayer::init(layerMap, parameterMap);
setOutput("mask", &mask_);
return true;
}
size_t MaxPoolWithMaskLayer::getSize() {
CHECK_EQ(inputLayers_.size(), 1UL);
size_t layerSize = 0;
outputY_ = outputSize(imgSizeY_,
sizeY_,
confPaddingY_,
strideY_,
/* caffeMode */ false);
outputX_ = outputSize(imgSize_,
sizeX_,
confPadding_,
stride_,
/* caffeMode */ false);
layerSize = outputX_ * outputY_ * channels_;
getOutput().setFrameHeight(outputY_);
getOutput().setFrameWidth(outputX_);
return layerSize;
}
void MaxPoolWithMaskLayer::forward(PassType passType) {
size_t size = getSize();
MatrixPtr inputV = inputLayers_[0]->getOutputValue();
int batchSize = inputV->getHeight();
resetOutput(batchSize, size);
MatrixPtr outV = getOutputValue();
CHECK_EQ(size, outV->getWidth());
resetSpecifyOutput(mask_,
batchSize,
size,
/* isValueClean */ false,
/* isGradClean */ true);
MatrixPtr maskV = mask_.value;
outV->maxPoolForward(*inputV,
imgSizeY_,
imgSize_,
channels_,
sizeX_,
sizeY_,
strideY_,
stride_,
outputY_,
outputX_,
confPaddingY_,
confPadding_,
maskV);
}
void MaxPoolWithMaskLayer::backward(const UpdateCallback& callback) {
(void)callback;
if (NULL == getInputGrad(0)) {
return;
}
MatrixPtr outGrad = getOutputGrad();
MatrixPtr inputV = inputLayers_[0]->getOutputValue();
MatrixPtr outV = getOutputValue();
MatrixPtr inputGrad = inputLayers_[0]->getOutputGrad();
inputGrad->maxPoolBackward(*inputV,
imgSizeY_,
imgSize_,
*outGrad,
*outV,
sizeX_,
sizeY_,
strideY_,
stride_,
outputY_,
outputX_,
1,
1,
confPaddingY_,
confPadding_);
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "PoolLayer.h"
#include "paddle/math/Matrix.h"
namespace paddle {
/**
* @brief Basic parent layer of different kinds of pooling
*/
class MaxPoolWithMaskLayer : public PoolLayer {
protected:
Argument mask_;
public:
explicit MaxPoolWithMaskLayer(const LayerConfig& config)
: PoolLayer(config) {}
size_t getSize();
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
};
} // namespace paddle
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "PoolLayer.h" #include "PoolLayer.h"
#include "MaxPoolWithMaskLayer.h"
#include "PoolProjectionLayer.h" #include "PoolProjectionLayer.h"
#include "paddle/utils/Logging.h" #include "paddle/utils/Logging.h"
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -44,7 +45,6 @@ bool PoolLayer::init(const LayerMap& layerMap, ...@@ -44,7 +45,6 @@ bool PoolLayer::init(const LayerMap& layerMap,
strideY_ = conf.has_stride_y() ? conf.stride_y() : conf.stride(); strideY_ = conf.has_stride_y() ? conf.stride_y() : conf.stride();
confPaddingY_ = conf.has_padding_y() ? conf.padding_y() : conf.padding(); confPaddingY_ = conf.has_padding_y() ? conf.padding_y() : conf.padding();
outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x(); outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
return true; return true;
} }
...@@ -57,6 +57,8 @@ Layer* PoolLayer::create(const LayerConfig& config) { ...@@ -57,6 +57,8 @@ Layer* PoolLayer::create(const LayerConfig& config) {
} else if (CudnnPoolLayer::typeCheck(pool)) { } else if (CudnnPoolLayer::typeCheck(pool)) {
return new CudnnPoolLayer(config); return new CudnnPoolLayer(config);
#endif #endif
} else if (pool == "max-pool-with-mask") {
return new MaxPoolWithMaskLayer(config);
} else { } else {
LOG(FATAL) << "Unknown pool type: " << pool; LOG(FATAL) << "Unknown pool type: " << pool;
return nullptr; return nullptr;
......
# gserver pacakge unittests # gserver pacakge unittests
add_simple_unittest(test_LinearChainCRF) add_simple_unittest(test_LinearChainCRF)
add_simple_unittest(test_MultinomialSampler)
add_simple_unittest(test_RecurrentLayer) add_simple_unittest(test_RecurrentLayer)
if(NOT MOBILE_INFERENCE)
add_simple_unittest(test_MultinomialSampler)
endif()
function(gserver_test TARGET) function(gserver_test TARGET)
add_unittest_without_exec(${TARGET} add_unittest_without_exec(${TARGET}
${TARGET}.cpp ${TARGET}.cpp
...@@ -24,6 +27,7 @@ gserver_test(test_ConvUnify) ...@@ -24,6 +27,7 @@ gserver_test(test_ConvUnify)
gserver_test(test_BatchNorm) gserver_test(test_BatchNorm)
gserver_test(test_KmaxSeqScore) gserver_test(test_KmaxSeqScore)
gserver_test(test_Expand) gserver_test(test_Expand)
gserver_test(test_MaxPoolingWithMaskOutput)
########## test_Mkldnn layers and activations ########## ########## test_Mkldnn layers and activations ##########
if(WITH_MKLDNN) if(WITH_MKLDNN)
...@@ -48,7 +52,7 @@ if(WITH_PYTHON) ...@@ -48,7 +52,7 @@ if(WITH_PYTHON)
endif() endif()
############### test_WarpCTCLayer ####################### ############### test_WarpCTCLayer #######################
if(NOT WITH_DOUBLE) if(NOT WITH_DOUBLE AND NOT MOBILE_INFERENCE)
add_unittest_without_exec(test_WarpCTCLayer add_unittest_without_exec(test_WarpCTCLayer
test_WarpCTCLayer.cpp) test_WarpCTCLayer.cpp)
......
...@@ -434,7 +434,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) { ...@@ -434,7 +434,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config.layerConfig.set_partial_sum(1); config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true); config.layerConfig.set_shared_biases(true);
int dilation = 1; int dilation = 2;
if (type == "cudnn_conv") { if (type == "cudnn_conv") {
#if CUDNN_VERSION >= 6000 #if CUDNN_VERSION >= 6000
dilation = 2; dilation = 2;
...@@ -1234,6 +1234,7 @@ void testPoolLayer2(const string& poolType, bool trans, bool useGpu) { ...@@ -1234,6 +1234,7 @@ void testPoolLayer2(const string& poolType, bool trans, bool useGpu) {
TEST(Layer, PoolLayer) { TEST(Layer, PoolLayer) {
testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false); testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false);
testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false);
testPoolLayer("max-pool-with-mask", /* trans= */ false, /* useGpu= */ false);
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true); testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true);
...@@ -1242,6 +1243,7 @@ TEST(Layer, PoolLayer) { ...@@ -1242,6 +1243,7 @@ TEST(Layer, PoolLayer) {
testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
testPoolLayer("max-pool-with-mask", /* trans= */ false, /* useGpu= */ true);
#endif #endif
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/math/MathUtils.h"
#include "paddle/testing/TestUtil.h"
using namespace paddle;
void setPoolConfig(TestConfig* config,
PoolConfig* pool,
const string& poolType) {
(*config).biasSize = 0;
(*config).layerConfig.set_type("pool");
(*config).layerConfig.set_num_filters(1);
int kw = 3, kh = 3;
int pw = 0, ph = 0;
int sw = 2, sh = 2;
pool->set_pool_type(poolType);
pool->set_channels(1);
pool->set_size_x(kw);
pool->set_size_y(kh);
pool->set_start(0);
pool->set_padding(pw);
pool->set_padding_y(ph);
pool->set_stride(sw);
pool->set_stride_y(sh);
int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
pool->set_output_x(ow);
pool->set_output_y(oh);
}
void doOneMaxPoolingWithMaskOutputTest(MatrixPtr& inputMat,
const string& poolType,
bool use_gpu,
MatrixPtr& maskMat) {
TestConfig config;
config.inputDefs.push_back({INPUT_DATA, "layer_0", 25, 0});
LayerInputConfig* input = config.layerConfig.add_inputs();
PoolConfig* pool = input->mutable_pool_conf();
pool->set_img_size(5);
pool->set_img_size_y(5);
setPoolConfig(&config, pool, poolType);
config.layerConfig.set_size(pool->output_x() * pool->output_y() *
pool->channels());
config.layerConfig.set_name("MaxPoolWithMask");
std::vector<DataLayerPtr> dataLayers;
LayerMap layerMap;
vector<Argument> datas;
initDataLayer(config,
&dataLayers,
&datas,
&layerMap,
"MaxPoolWithMask",
1,
false,
use_gpu);
dataLayers[0]->getOutputValue()->copyFrom(*inputMat);
FLAGS_use_gpu = use_gpu;
std::vector<ParameterPtr> parameters;
LayerPtr maxPoolingWithMaskOutputLayer;
initTestLayer(config, &layerMap, &parameters, &maxPoolingWithMaskOutputLayer);
maxPoolingWithMaskOutputLayer->forward(PASS_GC);
checkMatrixEqual(maxPoolingWithMaskOutputLayer->getOutput("mask").value,
maskMat);
}
TEST(Layer, maxPoolingWithMaskOutputLayerFwd) {
bool useGpu = false;
MatrixPtr inputMat;
MatrixPtr maskMat;
real inputData[] = {0.1, 0.1, 0.5, 0.5, 1.1, 0.2, 0.2, 0.6, 0.1,
0.1, 0.3, 0.3, 0.7, 0.1, 0.1, 0.4, 0.4, 0.8,
0.8, 0.1, 1.0, 2.0, 3.0, 0.0, 9.0};
real maskData[] = {12, 4, 22, 24};
inputMat = Matrix::create(1, 25, false, useGpu);
maskMat = Matrix::create(1, 4, false, useGpu);
inputMat->setData(inputData);
maskMat->setData(maskData);
doOneMaxPoolingWithMaskOutputTest(
inputMat, "max-pool-with-mask", useGpu, maskMat);
#ifdef PADDLE_WITH_CUDA
useGpu = true;
inputMat = Matrix::create(1, 25, false, useGpu);
maskMat = Matrix::create(1, 4, false, useGpu);
inputMat->copyFrom(inputData, 25);
maskMat->copyFrom(maskData, 4);
doOneMaxPoolingWithMaskOutputTest(
inputMat, "max-pool-with-mask", useGpu, maskMat);
#endif
}
...@@ -1902,5 +1902,52 @@ void BaseMatrixT<real>::sumOfProducts(BaseMatrixT& b, ...@@ -1902,5 +1902,52 @@ void BaseMatrixT<real>::sumOfProducts(BaseMatrixT& b,
} }
template class BaseMatrixT<real>; template class BaseMatrixT<real>;
#ifndef PADDLE_MOBILE_INFERENCE
template class BaseMatrixT<int>; template class BaseMatrixT<int>;
#else
template <>
void BaseMatrixT<int>::zero() {
applyUnary(unary::Zero<int>());
}
template <>
void BaseMatrixT<int>::assign(int p) {
applyUnary(unary::Assign<int>(p));
}
template <>
void BaseMatrixT<int>::isEqualTo(BaseMatrixT& b, int value) {
applyBinary(binary::IsEqual<int>(value), b);
}
template <>
void BaseMatrixT<int>::neg() {
applyUnary(unary::Neg<int>());
}
template <>
void BaseMatrixT<int>::abs2() {
applyUnary(unary::Abs<int>());
}
template <>
void BaseMatrixT<int>::add(int p) {
applyUnary(unary::Add<int>(p));
}
template <>
void BaseMatrixT<int>::add(int p1, int p2) {
applyUnary(unary::Add2<int>(p1, p2));
}
template <>
void BaseMatrixT<int>::applyL1(int learningRate, int decayRate) {
applyUnary(unary::ApplyL1<int>(learningRate * decayRate));
}
#endif
} // namespace paddle } // namespace paddle
...@@ -25,6 +25,19 @@ else() ...@@ -25,6 +25,19 @@ else()
message(STATUS "Compile with MKLDNNMatrix") message(STATUS "Compile with MKLDNNMatrix")
endif() endif()
if(MOBILE_INFERENCE)
list(REMOVE_ITEM MATH_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/SIMDFunctions.cpp)
# Remove sparse
list(REMOVE_ITEM MATH_HEADERS
${CMAKE_CURRENT_SOURCE_DIR}/CpuSparseMatrix.h
${CMAKE_CURRENT_SOURCE_DIR}/SparseMatrix.h
${CMAKE_CURRENT_SOURCE_DIR}/SparseRowMatrix.h)
list(REMOVE_ITEM MATH_SOURCES
${CMAKE_CURRENT_SOURCE_DIR}/CpuSparseMatrix.cpp
${CMAKE_CURRENT_SOURCE_DIR}/SparseMatrix.cpp
${CMAKE_CURRENT_SOURCE_DIR}/SparseRowMatrix.cpp)
endif()
set(MATH_SOURCES set(MATH_SOURCES
"${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu" "${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu"
"${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu" "${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu"
......
...@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#ifndef PADDLE_MOBILE_INFERENCE
#include <cstddef> #include <cstddef>
#include "Matrix.h" #include "Matrix.h"
...@@ -309,3 +312,57 @@ private: ...@@ -309,3 +312,57 @@ private:
using Matrix::subMatrix; using Matrix::subMatrix;
}; };
} // namespace paddle } // namespace paddle
#else
#include "Matrix.h"
namespace paddle {
class CpuSparseMatrix : public Matrix {
public:
CpuSparseMatrix(size_t height,
size_t width,
size_t nnz, /* used to allocate space */
SparseValueType valueType = FLOAT_VALUE,
SparseFormat format = SPARSE_CSR,
bool trans = false)
: Matrix(NULL, height, width, trans, false) {}
CpuSparseMatrix(real* data,
int* rows,
int* cols,
size_t height,
size_t width,
size_t nnz,
SparseValueType valueType,
SparseFormat format,
bool trans)
: Matrix(NULL, height, width, trans, false) {}
real* getValue() const { return nullptr; }
size_t getColStartIdx(size_t i) const { return 0; }
size_t getRowStartIdx(size_t i) const { return 0; }
size_t getColNum(size_t i) const { return 0; }
int* getRowCols(size_t i) const { return nullptr; }
CpuSparseMatrixPtr getTmpSparseMatrix(size_t height, size_t width) {
return nullptr;
}
void resize(size_t newHeight,
size_t newWidth,
size_t newNnz, /* used to allocate space */
SparseValueType valueType,
SparseFormat format) {}
void resize(size_t newHeight, size_t newWidth) {}
MatrixPtr getTranspose() { return nullptr; }
void setRow(size_t row,
size_t colNum,
const unsigned int* cols,
const real* values) {}
};
} // namespace paddle
#endif
...@@ -451,6 +451,7 @@ void GpuMatrix::addSharedBias(Matrix& b, real scale) { ...@@ -451,6 +451,7 @@ void GpuMatrix::addSharedBias(Matrix& b, real scale) {
} }
void GpuMatrix::collectBias(Matrix& a, real scale) { void GpuMatrix::collectBias(Matrix& a, real scale) {
#ifdef PADDLE_WITH_CUDA
CHECK_EQ(getHeight(), (size_t)1); CHECK_EQ(getHeight(), (size_t)1);
CHECK_EQ(width_, a.getWidth()); CHECK_EQ(width_, a.getWidth());
GpuSparseMatrix* sMatPtr = dynamic_cast<GpuSparseMatrix*>(&a); GpuSparseMatrix* sMatPtr = dynamic_cast<GpuSparseMatrix*>(&a);
...@@ -461,6 +462,7 @@ void GpuMatrix::collectBias(Matrix& a, real scale) { ...@@ -461,6 +462,7 @@ void GpuMatrix::collectBias(Matrix& a, real scale) {
hl_sparse_matrix_s A_d = sMatPtr->sMatrix_.get(); hl_sparse_matrix_s A_d = sMatPtr->sMatrix_.get();
hl_sparse_matrix_column_sum(data, A_d, sMatPtr->getHeight(), width_, scale); hl_sparse_matrix_column_sum(data, A_d, sMatPtr->getHeight(), width_, scale);
} }
#endif
} }
void GpuMatrix::collectSharedBias(Matrix& a, real scale) { void GpuMatrix::collectSharedBias(Matrix& a, real scale) {
...@@ -552,6 +554,7 @@ void GpuMatrix::mul(const GpuSparseMatrix& a, ...@@ -552,6 +554,7 @@ void GpuMatrix::mul(const GpuSparseMatrix& a,
const GpuMatrix& b, const GpuMatrix& b,
real scaleAB, real scaleAB,
real scaleT) { real scaleT) {
#ifdef PADDLE_WITH_CUDA
CHECK(isContiguous()); CHECK(isContiguous());
CHECK(b.isContiguous()); CHECK(b.isContiguous());
CHECK(b.useGpu_ == true) << "Matrix type are not equal"; CHECK(b.useGpu_ == true) << "Matrix type are not equal";
...@@ -578,12 +581,14 @@ void GpuMatrix::mul(const GpuSparseMatrix& a, ...@@ -578,12 +581,14 @@ void GpuMatrix::mul(const GpuSparseMatrix& a,
b.height_, b.height_,
scaleAB, scaleAB,
scaleT); scaleT);
#endif
} }
void GpuMatrix::mul(const GpuMatrix& a, void GpuMatrix::mul(const GpuMatrix& a,
const GpuSparseMatrix& b, const GpuSparseMatrix& b,
real scaleAB, real scaleAB,
real scaleT) { real scaleT) {
#ifdef PADDLE_WITH_CUDA
CHECK(isContiguous()); CHECK(isContiguous());
CHECK(a.isContiguous()); CHECK(a.isContiguous());
CHECK(a.useGpu_ == true) << "Matrix type are not equal"; CHECK(a.useGpu_ == true) << "Matrix type are not equal";
...@@ -622,6 +627,7 @@ void GpuMatrix::mul(const GpuMatrix& a, ...@@ -622,6 +627,7 @@ void GpuMatrix::mul(const GpuMatrix& a,
scaleAB, scaleAB,
scaleT); scaleT);
} }
#endif
} }
/* this = a*b */ /* this = a*b */
...@@ -1028,15 +1034,23 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -1028,15 +1034,23 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat,
size_t outputH, size_t outputH,
size_t outputW, size_t outputW,
size_t paddingH, size_t paddingH,
size_t paddingW) { size_t paddingW,
MatrixPtr maskMatP) {
CHECK(inputMat.useGpu_ == true) << "Matrix type are not equal"; CHECK(inputMat.useGpu_ == true) << "Matrix type are not equal";
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
real* maskData = NULL;
size_t frameNum = inputMat.getHeight(); size_t frameNum = inputMat.getHeight();
CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth()); CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth());
CHECK(height_ == inputMat.getHeight()); CHECK(height_ == inputMat.getHeight());
CHECK(width_ == outputH * outputW * channels); CHECK(width_ == outputH * outputW * channels);
if (maskMatP != NULL) {
CHECK(maskMatP->useGpu_ == true) << "Matrix type are not equal";
CHECK(outputH * outputW * channels == maskMatP->getWidth());
maskData = maskMatP->getData();
}
hl_maxpool_forward(frameNum, hl_maxpool_forward(frameNum,
inputData, inputData,
channels, channels,
...@@ -1051,7 +1065,8 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -1051,7 +1065,8 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat,
paddingH, paddingH,
paddingW, paddingW,
data_, data_,
getStride()); getStride(),
maskData);
} }
void GpuMatrix::maxPoolBackward(Matrix& inputMat, void GpuMatrix::maxPoolBackward(Matrix& inputMat,
...@@ -1548,6 +1563,7 @@ void GpuMatrix::bilinearBackward(const Matrix& out, ...@@ -1548,6 +1563,7 @@ void GpuMatrix::bilinearBackward(const Matrix& out,
} }
void GpuMatrix::multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) { void GpuMatrix::multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
#ifdef PADDLE_WITH_CUDA
GpuMatrix* outputPtr = dynamic_cast<GpuMatrix*>(&output); GpuMatrix* outputPtr = dynamic_cast<GpuMatrix*>(&output);
auto labelPtr = dynamic_cast<GpuSparseMatrix*>(&label); auto labelPtr = dynamic_cast<GpuSparseMatrix*>(&label);
...@@ -1563,9 +1579,11 @@ void GpuMatrix::multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) { ...@@ -1563,9 +1579,11 @@ void GpuMatrix::multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
hl_sparse_matrix_s mat_d = labelPtr->sMatrix_.get(); hl_sparse_matrix_s mat_d = labelPtr->sMatrix_.get();
hl_matrix_multi_binary_cross_entropy( hl_matrix_multi_binary_cross_entropy(
output_d, entropy_d, mat_d, height_, outputPtr->width_); output_d, entropy_d, mat_d, height_, outputPtr->width_);
#endif
} }
void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) { void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
#ifdef PADDLE_WITH_CUDA
GpuMatrix* outputPtr = dynamic_cast<GpuMatrix*>(&output); GpuMatrix* outputPtr = dynamic_cast<GpuMatrix*>(&output);
auto labelPtr = dynamic_cast<GpuSparseMatrix*>(&label); auto labelPtr = dynamic_cast<GpuSparseMatrix*>(&label);
...@@ -1581,6 +1599,7 @@ void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) { ...@@ -1581,6 +1599,7 @@ void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
hl_sparse_matrix_s mat_d = labelPtr->sMatrix_.get(); hl_sparse_matrix_s mat_d = labelPtr->sMatrix_.get();
hl_matrix_multi_binary_cross_entropy_bp( hl_matrix_multi_binary_cross_entropy_bp(
output_d, grad_d, mat_d, height_, width_); output_d, grad_d, mat_d, height_, width_);
#endif
} }
void GpuMatrix::vol2Col(real* dataSrc, void GpuMatrix::vol2Col(real* dataSrc,
...@@ -1973,9 +1992,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -1973,9 +1992,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
size_t outputH, size_t outputH,
size_t outputW, size_t outputW,
size_t paddingH, size_t paddingH,
size_t paddingW) { size_t paddingW,
MatrixPtr maskMatP) {
real* inputData = inputMat.getData(); real* inputData = inputMat.getData();
real* outData = data_; real* outData = data_;
real* maskData = NULL;
size_t num = inputMat.getHeight(); size_t num = inputMat.getHeight();
size_t inLength = imgSizeH * imgSizeW; size_t inLength = imgSizeH * imgSizeW;
size_t outLength = outputH * outputW; size_t outLength = outputH * outputW;
...@@ -1984,6 +2005,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -1984,6 +2005,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
CHECK_EQ(channels * outLength, this->getWidth()); CHECK_EQ(channels * outLength, this->getWidth());
size_t outStride = getStride(); size_t outStride = getStride();
if (maskMatP != NULL) {
maskData = maskMatP->getData();
CHECK_EQ(channels * outLength, maskMatP->getWidth());
}
/* initialize the data_ */ /* initialize the data_ */
for (size_t i = 0; i < height_; i++) { for (size_t i = 0; i < height_; i++) {
for (size_t j = 0; j < width_; j++) { for (size_t j = 0; j < width_; j++) {
...@@ -2005,10 +2031,21 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -2005,10 +2031,21 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
int wstart = pw * strideW - paddingW; int wstart = pw * strideW - paddingW;
int wend = std::min(wstart + sizeX, imgSizeW); int wend = std::min(wstart + sizeX, imgSizeW);
wstart = std::max(wstart, 0); wstart = std::max(wstart, 0);
for (int h = hstart; h < hend; ++h) { if (maskData == NULL) {
for (int w = wstart; w < wend; ++w) { for (int h = hstart; h < hend; ++h) {
outData[ph * outputW + pw] = std::max( for (int w = wstart; w < wend; ++w) {
outData[ph * outputW + pw], inputData[h * imgSizeW + w]); outData[ph * outputW + pw] = std::max(
outData[ph * outputW + pw], inputData[h * imgSizeW + w]);
}
}
} else {
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (outData[ph * outputW + pw] < inputData[h * imgSizeW + w]) {
outData[ph * outputW + pw] = inputData[h * imgSizeW + w];
maskData[ph * outputW + pw] = h * imgSizeW + w;
}
}
} }
} }
} }
...@@ -2016,6 +2053,8 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, ...@@ -2016,6 +2053,8 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
// compute offset // compute offset
inputData += inLength; inputData += inLength;
outData += outLength; outData += outLength;
if (maskData != NULL) maskData += outLength;
} }
} }
} }
...@@ -3226,6 +3265,7 @@ template void CpuMatrix::mul<CpuMatrix, CacheRowCpuMatrix>(CpuSparseMatrix* a, ...@@ -3226,6 +3265,7 @@ template void CpuMatrix::mul<CpuMatrix, CacheRowCpuMatrix>(CpuSparseMatrix* a,
real scaleAB, real scaleAB,
real scaleT); real scaleT);
#ifndef PADDLE_MOBILE_INFERENCE
void SharedCpuMatrix::mul(CpuSparseMatrix* a, void SharedCpuMatrix::mul(CpuSparseMatrix* a,
CpuMatrix* b, CpuMatrix* b,
real scaleAB, real scaleAB,
...@@ -3354,6 +3394,7 @@ void SharedCpuMatrix::initBlock(int blockNum) { ...@@ -3354,6 +3394,7 @@ void SharedCpuMatrix::initBlock(int blockNum) {
} }
} }
#endif
/* Add a (column) vector b to matrix a, column by column */ /* Add a (column) vector b to matrix a, column by column */
void CpuMatrix::addColumnVector(const Matrix& b) { void CpuMatrix::addColumnVector(const Matrix& b) {
BaseMatrix::addColVector(const_cast<Matrix&>(b)); BaseMatrix::addColVector(const_cast<Matrix&>(b));
......
...@@ -861,7 +861,8 @@ public: ...@@ -861,7 +861,8 @@ public:
/** /**
* Pooling forward operation, pick out the largest element * Pooling forward operation, pick out the largest element
* in the sizeX of value * in the sizeX of value, if the maskMatP is not NULL, it will
* also caculate the location indices.
*/ */
virtual void maxPoolForward(Matrix& inputMat, virtual void maxPoolForward(Matrix& inputMat,
size_t imgSizeH, size_t imgSizeH,
...@@ -874,7 +875,8 @@ public: ...@@ -874,7 +875,8 @@ public:
size_t outputH, size_t outputH,
size_t outputW, size_t outputW,
size_t paddingH, size_t paddingH,
size_t paddingW) { size_t paddingW,
MatrixPtr maskMatP = NULL) {
LOG(FATAL) << "Not implemeted"; LOG(FATAL) << "Not implemeted";
} }
...@@ -1426,7 +1428,8 @@ public: ...@@ -1426,7 +1428,8 @@ public:
size_t outputH, size_t outputH,
size_t outputW, size_t outputW,
size_t paddingH, size_t paddingH,
size_t paddingW); size_t paddingW,
MatrixPtr maskMatP);
void maxPoolBackward(Matrix& image, void maxPoolBackward(Matrix& image,
size_t imgSizeH, size_t imgSizeH,
...@@ -1697,7 +1700,8 @@ public: ...@@ -1697,7 +1700,8 @@ public:
size_t outputH, size_t outputH,
size_t outputW, size_t outputW,
size_t paddingH, size_t paddingH,
size_t paddingW); size_t paddingW,
MatrixPtr maskMatP);
void maxPoolBackward(Matrix& image, void maxPoolBackward(Matrix& image,
size_t imgSizeH, size_t imgSizeH,
...@@ -2066,6 +2070,7 @@ public: ...@@ -2066,6 +2070,7 @@ public:
class SharedCpuMatrix : public CpuMatrix { class SharedCpuMatrix : public CpuMatrix {
public: public:
#ifndef PADDLE_MOBILE_INFERENCE
/* blockNum is number of partitions of the matrix */ /* blockNum is number of partitions of the matrix */
SharedCpuMatrix(int blockNum, size_t height, size_t width, bool trans = false) SharedCpuMatrix(int blockNum, size_t height, size_t width, bool trans = false)
: CpuMatrix(height, width, trans) { : CpuMatrix(height, width, trans) {
...@@ -2111,6 +2116,7 @@ private: ...@@ -2111,6 +2116,7 @@ private:
ThreadLocal<CpuMatrixPtr> localBuf_; ThreadLocal<CpuMatrixPtr> localBuf_;
ThreadLocal<std::vector<int>> localBufRows_; ThreadLocal<std::vector<int>> localBufRows_;
ThreadLocal<std::vector<int>> blockSeq_; ThreadLocal<std::vector<int>> blockSeq_;
#endif
}; };
typedef struct { unsigned int col; } sparse_non_value_t; typedef struct { unsigned int col; } sparse_non_value_t;
......
...@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#ifndef PADDLE_MOBILE_INFERENCE
#include <cstddef> #include <cstddef>
#include "CpuSparseMatrix.h" #include "CpuSparseMatrix.h"
#include "Matrix.h" #include "Matrix.h"
...@@ -237,3 +240,47 @@ private: ...@@ -237,3 +240,47 @@ private:
}; };
} // namespace paddle } // namespace paddle
#else
#include "CpuSparseMatrix.h"
namespace paddle {
class GpuSparseMatrix : public Matrix {
public:
GpuSparseMatrix(size_t height,
size_t width,
size_t nnz, /* used to allocate space */
SparseValueType valueType = FLOAT_VALUE,
SparseFormat format_ = SPARSE_CSR,
bool trans = false)
: Matrix(NULL, height, width, trans, false) {}
GpuSparseMatrix(real* value,
int* rows,
int* cols,
size_t height,
size_t width,
size_t nnz,
SparseValueType valueType,
SparseFormat format,
bool trans)
: Matrix(NULL, height, width, trans, true) {}
void resize(size_t newHeight,
size_t newWidth,
size_t newNnz, /* used to allocate space */
SparseValueType valueType,
SparseFormat format) {}
void resize(size_t newHeight, size_t newWidth) {}
MatrixPtr getTranspose() { return nullptr; }
void setRow(size_t row,
size_t colNum,
const unsigned int* cols,
const real* values) {}
};
} // namespace paddle
#endif
...@@ -14,6 +14,8 @@ limitations under the License. */ ...@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once #pragma once
#ifndef PADDLE_MOBILE_INFERENCE
#include <gflags/gflags.h> #include <gflags/gflags.h>
#include <string.h> #include <string.h>
#include <algorithm> #include <algorithm>
...@@ -313,3 +315,27 @@ private: ...@@ -313,3 +315,27 @@ private:
}; };
} // namespace paddle } // namespace paddle
#else
namespace paddle {
class SparseRowCpuMatrix : public CpuMatrix {
public:
void reserveStore() {}
void clearIndices() {}
};
class SparsePrefetchRowCpuMatrix : public SparseRowCpuMatrix {
public:
void setupIndices() {}
void addRows(MatrixPtr input) {}
void addRows(IVectorPtr ids) {}
};
class SparseAutoGrowRowCpuMatrix : public SparseRowCpuMatrix {};
class CacheRowCpuMatrix : public SparseAutoGrowRowCpuMatrix {};
class SparseRowIdsCpuMatrix : public CpuMatrix {};
} // namespace paddle
#endif
...@@ -3,8 +3,10 @@ ...@@ -3,8 +3,10 @@
add_simple_unittest(test_ExecViaCpu) add_simple_unittest(test_ExecViaCpu)
add_simple_unittest(test_SIMDFunctions) add_simple_unittest(test_SIMDFunctions)
add_simple_unittest(test_TrainingAlgorithm) add_simple_unittest(test_TrainingAlgorithm)
add_simple_unittest(test_SparseMatrix)
add_simple_unittest(test_RowBuffer) add_simple_unittest(test_RowBuffer)
if(NOT MOBILE_INFERENCE)
add_simple_unittest(test_SparseMatrix)
endif()
# TODO(yuyang18): Refactor TestUtil.cpp. Remove this cross module reference. # TODO(yuyang18): Refactor TestUtil.cpp. Remove this cross module reference.
add_unittest(test_matrixCompare add_unittest(test_matrixCompare
......
...@@ -30,6 +30,10 @@ class AccuracyOp : public framework::OperatorWithKernel { ...@@ -30,6 +30,10 @@ class AccuracyOp : public framework::OperatorWithKernel {
"Input (Label) of accuracy op should not be null."); "Input (Label) of accuracy op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Accuracy"), PADDLE_ENFORCE(ctx->HasOutput("Accuracy"),
"Output (Accuracy) of AccuracyOp should not be null."); "Output (Accuracy) of AccuracyOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Correct"),
"Output (Correct) of AccuracyOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Total"),
"Output (Total) of AccuracyOp should not be null.");
auto inference_dim = ctx->GetInputDim("Out"); auto inference_dim = ctx->GetInputDim("Out");
auto label_dim = ctx->GetInputDim("Label"); auto label_dim = ctx->GetInputDim("Label");
...@@ -43,6 +47,8 @@ class AccuracyOp : public framework::OperatorWithKernel { ...@@ -43,6 +47,8 @@ class AccuracyOp : public framework::OperatorWithKernel {
" the same as label."); " the same as label.");
ctx->SetOutputDim("Accuracy", {1}); ctx->SetOutputDim("Accuracy", {1});
ctx->SetOutputDim("Correct", {1});
ctx->SetOutputDim("Total", {1});
ctx->ShareLoD("Out", /*->*/ "Accuracy"); ctx->ShareLoD("Out", /*->*/ "Accuracy");
} }
...@@ -66,6 +72,8 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -66,6 +72,8 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Label", "Label of the training data"); AddInput("Label", "Label of the training data");
// TODO(typhoonzero): AddInput("Weight", ... // TODO(typhoonzero): AddInput("Weight", ...
AddOutput("Accuracy", "The accuracy of current batch"); AddOutput("Accuracy", "The accuracy of current batch");
AddOutput("Correct", "The correct samples count of current batch");
AddOutput("Total", "The samples count of current batch");
AddComment(R"DOC( AddComment(R"DOC(
Accuracy Operator. Accuracy Operator.
......
...@@ -24,7 +24,8 @@ using platform::PADDLE_CUDA_NUM_THREADS; ...@@ -24,7 +24,8 @@ using platform::PADDLE_CUDA_NUM_THREADS;
template <int BlockSize> template <int BlockSize>
__global__ void AccuracyCudaKernel(const int N, const int D, __global__ void AccuracyCudaKernel(const int N, const int D,
const int64_t* Xdata, const int64_t* Xdata,
const int64_t* labeldata, float* accuracy) { const int64_t* labeldata, int* correct_data,
float* accuracy) {
int count = 0; int count = 0;
__shared__ int total[BlockSize]; __shared__ int total[BlockSize];
...@@ -43,6 +44,7 @@ __global__ void AccuracyCudaKernel(const int N, const int D, ...@@ -43,6 +44,7 @@ __global__ void AccuracyCudaKernel(const int N, const int D,
// reduce the count with init value 0, and output accuracy. // reduce the count with init value 0, and output accuracy.
int result = thrust::reduce(thrust::device, total, total + BlockSize, 0); int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
if (threadIdx.x == 0) { if (threadIdx.x == 0) {
*correct_data = result;
*accuracy = static_cast<float>(result) / static_cast<float>(N); *accuracy = static_cast<float>(result) / static_cast<float>(N);
} }
} }
...@@ -56,31 +58,48 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> { ...@@ -56,31 +58,48 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
auto* inference = ctx.Input<Tensor>("Out"); auto* inference = ctx.Input<Tensor>("Out");
auto* indices = ctx.Input<Tensor>("Indices"); auto* indices = ctx.Input<Tensor>("Indices");
auto* label = ctx.Input<Tensor>("Label"); auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy"); auto* accuracy = ctx.Output<Tensor>("Accuracy");
auto* correct = ctx.Output<Tensor>("Correct");
auto* total = ctx.Output<Tensor>("Total");
// FIXME(typhoonzero): only support indices currently // FIXME(typhoonzero): only support indices currently
// if add support for output values, how to detect the data type? // if add support for output values, how to detect the data type?
const int64_t* indices_data = indices->data<int64_t>(); const int64_t* indices_data = indices->data<int64_t>();
const int64_t* label_data = label->data<int64_t>(); const int64_t* label_data = label->data<int64_t>();
int* correct_data = correct->mutable_data<int>(ctx.GetPlace());
int* total_data = total->mutable_data<int>(ctx.GetPlace());
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace()); float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
size_t num_samples = inference->dims()[0]; int num_samples = static_cast<int>(inference->dims()[0]);
size_t infer_width = inference->dims()[1]; size_t infer_width = inference->dims()[1];
PADDLE_ENFORCE(cudaMemset(accuracy_data, 0, sizeof(float))); PADDLE_ENFORCE(cudaMemset(accuracy_data, 0, sizeof(float)));
// cudaMemset((void**)&correct_data, 0, sizeof(float));
if (num_samples == 0) { if (num_samples == 0) {
return; return;
} }
cudaMemcpy(total_data, &num_samples, sizeof(int), cudaMemcpyHostToDevice);
AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<< AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<
1, PADDLE_CUDA_NUM_THREADS, 0, ctx.cuda_device_context().stream()>>>( 1, PADDLE_CUDA_NUM_THREADS, 0, ctx.cuda_device_context().stream()>>>(
num_samples, infer_width, indices_data, label_data, accuracy_data); num_samples, infer_width, indices_data, label_data, correct_data,
accuracy_data);
int d_num_samples, d_num_correct;
float d_accuracy;
cudaMemcpy(&d_num_correct, correct_data, sizeof(int),
cudaMemcpyDeviceToHost);
cudaMemcpy(&d_num_samples, total_data, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&d_accuracy, accuracy_data, sizeof(float),
cudaMemcpyDeviceToHost);
} }
}; };
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
// FIXME(typhoonzero): types of T is for infernece data. // FIXME(typhoonzero): types of T is for inference data.
// label data is always int // label data is always int64
REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel<float>, REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel<float>,
paddle::operators::AccuracyOpCUDAKernel<double>); paddle::operators::AccuracyOpCUDAKernel<double>);
...@@ -29,7 +29,11 @@ class AccuracyKernel : public framework::OpKernel<T> { ...@@ -29,7 +29,11 @@ class AccuracyKernel : public framework::OpKernel<T> {
auto* indices = ctx.Input<Tensor>("Indices"); auto* indices = ctx.Input<Tensor>("Indices");
auto* label = ctx.Input<Tensor>("Label"); auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy"); auto* accuracy = ctx.Output<Tensor>("Accuracy");
auto* correct = ctx.Output<Tensor>("Correct");
auto* total = ctx.Output<Tensor>("Total");
int* correct_data = correct->mutable_data<int>(ctx.GetPlace());
int* total_data = total->mutable_data<int>(ctx.GetPlace());
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace()); float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
const int64_t* indices_data = indices->data<int64_t>(); const int64_t* indices_data = indices->data<int64_t>();
...@@ -55,7 +59,8 @@ class AccuracyKernel : public framework::OpKernel<T> { ...@@ -55,7 +59,8 @@ class AccuracyKernel : public framework::OpKernel<T> {
} }
} }
// FIXME(typhoonzero): we don't accumulate the accuracy for now. *correct_data = num_correct;
*total_data = num_samples;
*accuracy_data = *accuracy_data =
static_cast<float>(num_correct) / static_cast<float>(num_samples); static_cast<float>(num_correct) / static_cast<float>(num_samples);
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/data_type.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/var_type.h"
namespace paddle {
namespace operators {
class AssignFunctor {
public:
AssignFunctor(framework::Variable *out,
const platform::DeviceContext &dev_ctx)
: out_(out), dev_ctx_(dev_ctx) {}
void operator()(const framework::LoDTensor &lod_tensor) const {
auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
copy_tensor(lod_tensor, &out_tensor);
}
void operator()(const framework::LoDTensorArray &array) const {
auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
out_array.resize(array.size());
for (size_t i = 0; i < array.size(); ++i) {
copy_tensor(array[i], &out_array[i]);
}
}
void operator()(const framework::SelectedRows &rows) const {
framework::SelectedRows &out_rows =
*out_->GetMutable<framework::SelectedRows>();
out_rows.set_rows(rows.rows());
out_rows.set_height(rows.height());
auto &t = rows.value();
out_rows.mutable_value()->CopyFrom(t, t.place(), dev_ctx_);
}
template <typename T>
void operator()(const T &v) const {
PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
}
private:
void copy_tensor(const framework::LoDTensor &lod_tensor,
framework::LoDTensor *out) const {
auto &out_tensor = *out;
out_tensor.CopyFrom(lod_tensor, lod_tensor.place(), dev_ctx_);
out_tensor.set_lod(lod_tensor.lod());
}
framework::Variable *out_;
const platform::DeviceContext &dev_ctx_;
};
class AssignOp : public framework::OperatorBase {
public:
AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto *x = scope.FindVar(Input("X"));
if (x == nullptr) {
return;
}
auto *out = scope.FindVar(Output("Out"));
PADDLE_ENFORCE(
out != nullptr,
"The Output(Out) should not be null if the Input(X) is set.");
framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
}
};
class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
AssignOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
"could be LoDTensor, SelectedRows or LoDTensorArray.")
.AsDispensable();
AddOutput("Out",
"(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
"is the same as input X.");
AddComment(R"DOC(Assign Operator
Out = X, when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
}
};
class AssignInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
if (context->HasInput("X")) {
auto type = context->GetInputsVarType("X")[0];
if (type == framework::VarDesc_VarType_SELECTED_ROWS ||
type == framework::VarDesc_VarType_LOD_TENSOR) {
context->SetOutputDim("Out", context->GetInputDim("X"));
}
}
}
};
class AssignGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *op = new framework::OpDescBind();
op->SetType("assign");
op->SetInput("X", OutputGrad("Out"));
op->SetOutput("Out", InputGrad("X"));
return std::unique_ptr<framework::OpDescBind>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
ops::AssignInferShape, ops::AssignOpProtoMaker);
...@@ -27,6 +27,7 @@ class BeamSearchDecodeOp : public framework::OperatorBase { ...@@ -27,6 +27,7 @@ class BeamSearchDecodeOp : public framework::OperatorBase {
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
framework::ExecutionContext ctx(*this, scope, dev_ctx); framework::ExecutionContext ctx(*this, scope, dev_ctx);
const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids"); const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores"); const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
const size_t step_num = ids->size(); const size_t step_num = ids->size();
......
...@@ -94,5 +94,13 @@ class CompareOp : public framework::OperatorWithKernel { ...@@ -94,5 +94,13 @@ class CompareOp : public framework::OperatorWithKernel {
REGISTER_LOGICAL_OP(less_than, "Out = X < Y"); REGISTER_LOGICAL_OP(less_than, "Out = X < Y");
REGISTER_LOGICAL_KERNEL(less_than, CPU, paddle::operators::LessThanFunctor); REGISTER_LOGICAL_KERNEL(less_than, CPU, paddle::operators::LessThanFunctor);
REGISTER_LOGICAL_OP(less_equal, "Out = X <= Y");
REGISTER_LOGICAL_KERNEL(less_equal, CPU, paddle::operators::LessEqualFunctor);
REGISTER_LOGICAL_OP(greater_than, "Out = X > Y");
REGISTER_LOGICAL_KERNEL(greater_than, CPU,
paddle::operators::GreaterThanFunctor);
REGISTER_LOGICAL_OP(greater_equal, "Out = X >= Y");
REGISTER_LOGICAL_KERNEL(greater_equal, CPU,
paddle::operators::GreaterEqualFunctor);
REGISTER_LOGICAL_OP(equal, "Out = X == Y"); REGISTER_LOGICAL_OP(equal, "Out = X == Y");
REGISTER_LOGICAL_KERNEL(equal, CPU, paddle::operators::EqualFunctor); REGISTER_LOGICAL_KERNEL(equal, CPU, paddle::operators::EqualFunctor);
...@@ -15,4 +15,9 @@ ...@@ -15,4 +15,9 @@
#include "paddle/operators/compare_op.h" #include "paddle/operators/compare_op.h"
REGISTER_LOGICAL_KERNEL(less_than, GPU, paddle::operators::LessThanFunctor); REGISTER_LOGICAL_KERNEL(less_than, GPU, paddle::operators::LessThanFunctor);
REGISTER_LOGICAL_KERNEL(less_equal, GPU, paddle::operators::LessEqualFunctor);
REGISTER_LOGICAL_KERNEL(greater_than, GPU,
paddle::operators::GreaterThanFunctor);
REGISTER_LOGICAL_KERNEL(greater_equal, GPU,
paddle::operators::GreaterEqualFunctor);
REGISTER_LOGICAL_KERNEL(equal, GPU, paddle::operators::EqualFunctor); REGISTER_LOGICAL_KERNEL(equal, GPU, paddle::operators::EqualFunctor);
...@@ -27,6 +27,24 @@ struct LessThanFunctor { ...@@ -27,6 +27,24 @@ struct LessThanFunctor {
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a < b; } HOSTDEVICE bool operator()(const T& a, const T& b) const { return a < b; }
}; };
template <typename T>
struct LessEqualFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a <= b; }
};
template <typename T>
struct GreaterThanFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a > b; }
};
template <typename T>
struct GreaterEqualFunctor {
using ELEM_TYPE = T;
HOSTDEVICE bool operator()(const T& a, const T& b) const { return a >= b; }
};
template <typename T> template <typename T>
struct EqualFunctor { struct EqualFunctor {
using ELEM_TYPE = T; using ELEM_TYPE = T;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/framework/executor.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
class ConditionalOp : public framework::OperatorBase {
public:
ConditionalOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
protected:
std::vector<const framework::LoDTensor *> InputTensors(
const framework::Scope &scope) const {
std::vector<const framework::LoDTensor *> retv;
auto xs = Inputs("X");
retv.resize(xs.size(), nullptr);
std::transform(
xs.begin(), xs.end(), retv.begin(),
[&scope](const std::string &var_name) -> const framework::LoDTensor * {
auto *var = scope.FindVar(var_name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
return &var->Get<framework::LoDTensor>();
});
return retv;
}
};
class ConditionalBlockOp : public ConditionalOp {
public:
ConditionalBlockOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ConditionalOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto xs = InputTensors(scope);
bool need_run = std::all_of(
xs.begin(), xs.end(),
[](const framework::LoDTensor *t) { return t->numel() != 0; });
if (need_run) {
auto *scope_var = scope.FindVar(Output("Scope"));
PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
scopes->resize(1);
scopes->front() = &scope.NewScope();
auto &cur_scope = *scopes->front();
auto *block = Attr<framework::BlockDescBind *>("block");
framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
}
}
};
class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
ConditionalBlockOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The conditional variable of this operator. If X is empty, the "
"whole sub-block will not be executed.")
.AsDuplicable();
AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
AddOutput("Scope",
"(std::vector<Scope*>) The step scope of conditional block. To "
"unify the conditional block, rnn and while op, the type of "
"scope is std::vector<Scope*>");
AddAttr<framework::BlockDescBind *>(
"block", "The step block of conditional block operator");
AddComment(R"DOC(Conditional block operator
Run the sub-block if X is not empty. Params is the other inputs and Out is the
outputs of the sub-block.
)DOC");
}
};
class ConditionalBlockGradOp : public ConditionalOp {
public:
ConditionalBlockGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ConditionalOp(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto xs = this->InputTensors(scope);
bool need_run = std::all_of(
xs.begin(), xs.end(),
[](const framework::LoDTensor *t) { return t->numel() != 0; });
if (need_run) {
auto *scope_var = scope.FindVar(Input("Scope"));
PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
framework::Scope &cur_scope = *scopes[0];
auto *block = Attr<framework::BlockDescBind *>("block");
framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("Params"),
Outputs(framework::GradVarName("Params")));
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("X"),
Outputs(framework::GradVarName("X")));
}
}
private:
void AssignLocalGradientToGlobal(
const platform::DeviceContext &dev_ctx, const framework::Scope &cur_scope,
const std::vector<std::string> &p_names,
const std::vector<std::string> &pg_names) const {
for (size_t i = 0; i < p_names.size(); ++i) {
auto out_grad_name = pg_names[i];
auto in_grad_name = framework::GradVarName(p_names[i]);
auto *in_var = cur_scope.FindVar(in_grad_name);
if (in_var == nullptr) {
continue;
}
auto new_in_grad_name = cur_scope.Rename(in_grad_name);
auto assign =
framework::OpRegistry::CreateOp("assign", {{"X", {new_in_grad_name}}},
{{"Out", {out_grad_name}}}, {});
assign->Run(cur_scope, dev_ctx);
cur_scope.Rename(new_in_grad_name, in_grad_name);
}
}
};
class ConditionalBlockGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInputs("X"));
if (context->HasInputs("Params")) {
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
context->SetOutputsDim(framework::GradVarName("Params"),
context->GetInputsDim("Params"));
}
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X"));
}
};
class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto grad_op = new framework::OpDescBind();
grad_op->SetType("conditional_block_grad");
grad_op->SetInput("X", Input("X"));
grad_op->SetInput("Params", Input("Params"));
grad_op->SetInput("Out", Output("Out"));
grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
grad_op->SetInput("Scope", Output("Scope"));
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params"));
grad_op->SetBlockAttr("block", *this->grad_block_[0]);
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
ops::ConditionalBlockOpProtoMaker,
ops::ConditionalBlockGradMaker);
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
ops::ConditionalBlockGradInferShape);
...@@ -34,7 +34,13 @@ REGISTER_OP(elementwise_add, ops::ElementwiseOp, ops::ElementwiseAddOpMaker, ...@@ -34,7 +34,13 @@ REGISTER_OP(elementwise_add, ops::ElementwiseOp, ops::ElementwiseAddOpMaker,
elementwise_add_grad, ops::ElementwiseOpGrad); elementwise_add_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_add, elementwise_add,
ops::ElementwiseAddKernel<paddle::platform::CPUPlace, float>); ops::ElementwiseAddKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseAddKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseAddKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseAddKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_add_grad, elementwise_add_grad,
ops::ElementwiseAddGradKernel<paddle::platform::CPUPlace, float>); ops::ElementwiseAddGradKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseAddGradKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseAddGradKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseAddGradKernel<paddle::platform::CPUPlace, int64_t>);
...@@ -35,7 +35,13 @@ REGISTER_OP(elementwise_div, ops::ElementwiseOp, ops::ElementwiseDivOpMaker, ...@@ -35,7 +35,13 @@ REGISTER_OP(elementwise_div, ops::ElementwiseOp, ops::ElementwiseDivOpMaker,
elementwise_div_grad, ops::ElementwiseOpGrad); elementwise_div_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_div, elementwise_div,
ops::ElementwiseDivKernel<paddle::platform::CPUPlace, float>); ops::ElementwiseDivKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseDivKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseDivKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseDivKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_div_grad, elementwise_div_grad,
ops::ElementwiseDivGradKernel<paddle::platform::CPUPlace, float>); ops::ElementwiseDivGradKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseDivGradKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseDivGradKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseDivGradKernel<paddle::platform::CPUPlace, int64_t>);
...@@ -37,8 +37,12 @@ REGISTER_OP(elementwise_mul, ops::ElementwiseOp, ops::ElementwiseMulOpMaker, ...@@ -37,8 +37,12 @@ REGISTER_OP(elementwise_mul, ops::ElementwiseOp, ops::ElementwiseMulOpMaker,
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_mul, elementwise_mul,
ops::ElementwiseMulKernel<paddle::platform::CPUPlace, float>, ops::ElementwiseMulKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseMulKernel<paddle::platform::CPUPlace, double>); ops::ElementwiseMulKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseMulKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseMulKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_mul_grad, elementwise_mul_grad,
ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, float>, ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, double>); ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, int64_t>);
...@@ -34,7 +34,13 @@ REGISTER_OP(elementwise_sub, ops::ElementwiseOp, ops::ElementwiseSubOpMaker, ...@@ -34,7 +34,13 @@ REGISTER_OP(elementwise_sub, ops::ElementwiseOp, ops::ElementwiseSubOpMaker,
elementwise_sub_grad, ops::ElementwiseOpGrad); elementwise_sub_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_sub, elementwise_sub,
ops::ElementwiseSubKernel<paddle::platform::CPUPlace, float>); ops::ElementwiseSubKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseSubKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseSubKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseSubKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
elementwise_sub_grad, elementwise_sub_grad,
ops::ElementwiseSubGradKernel<paddle::platform::CPUPlace, float>); ops::ElementwiseSubGradKernel<paddle::platform::CPUPlace, float>,
ops::ElementwiseSubGradKernel<paddle::platform::CPUPlace, double>,
ops::ElementwiseSubGradKernel<paddle::platform::CPUPlace, int>,
ops::ElementwiseSubGradKernel<paddle::platform::CPUPlace, int64_t>);
...@@ -29,7 +29,7 @@ class L1NormKernel : public framework::OpKernel<T> { ...@@ -29,7 +29,7 @@ class L1NormKernel : public framework::OpKernel<T> {
Out->mutable_data<T>(context.GetPlace()); Out->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X); auto x = framework::EigenVector<T>::Flatten(*X);
auto out = framework::EigenVector<T>::Flatten(*Out); auto out = framework::EigenScalar<T>::From(*Out);
auto place = context.GetEigenDevice<Place>(); auto place = context.GetEigenDevice<Place>();
out.device(place) = x.abs().sum(); out.device(place) = x.abs().sum();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lod_reset_op.h"
namespace paddle {
namespace operators {
class LoDResetOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
// input check
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of LoDResetOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of LoDResetOp should not be null.");
// If target LoD is not set form Input(), then it must be set from Attr().
if (!ctx->HasInput("TargetLoD")) {
auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
PADDLE_ENFORCE(level0.size() > 1,
"Target LoD is not found, should be set to be a valid one "
"through Input() or Attr().");
}
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LoDResetOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(LoDTensor) The input tensor of lod_reset operator.");
AddInput("TargetLoD",
"(Tensor, optional) The target level 0 LoD from Input().")
.AsDispensable();
AddOutput("Out", "(LoDTensor) The output tensor of lod_reset operator.");
AddAttr<std::vector<int>>("target_lod",
"The target level 0 LoD from Attr().")
.SetDefault(std::vector<int>{});
AddComment(R"DOC(LoDReset operator
Reset LoD of Input(X) into a new one specified by Input(TargetLoD) or
Attr(target_lod), or set LoD for Input(X) if it doesn't have one.
Currently the lod_reset operator only supports the reset of level 0 LoD.
At least one of Input(TargetLoD) and Attr(target_lod) must be set,
and if both of them are set, Input(TargetLoD) will be chosen as the
target LoD.
An example:
Given a float LoDTensor X with shape (6, 1), its transpose form represents
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0],
with LoD = [[0, 2, 5, 6]] and the three (transposed) sequences look like
[1.0, 2.0], [3.0, 4.0, 5.0], [6.0].
If target LoD = [0, 4, 6], the lod_reset operator will reset the LoD and
the sequences that the LoDTensor Output(Out) contains becomes:
[1.0, 2.0, 3.0, 4.0], [5.0, 6.0].
)DOC");
}
};
class LoDResetGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker, lod_reset_grad,
ops::LoDResetGradOp);
REGISTER_OP_CPU_KERNEL(lod_reset,
ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
ops::LoDResetKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lod_reset_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(lod_reset,
ops::LoDResetKernel<paddle::platform::GPUPlace, float>,
ops::LoDResetKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::GPUPlace, float>,
ops::LoDResetGradKernel<paddle::platform::GPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class LoDResetKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out = ctx.Output<framework::LoDTensor>("Out");
auto* in = ctx.Input<framework::LoDTensor>("X");
auto* lod_t = ctx.Input<framework::Tensor>("TargetLoD");
std::vector<int> level0;
if (lod_t) {
auto* lod = lod_t->data<int>();
if (platform::is_gpu_place(ctx.GetPlace())) {
framework::Tensor lod_cpu;
lod_cpu.CopyFrom(*lod_t, platform::CPUPlace(), ctx.device_context());
lod = lod_cpu.data<int>();
}
level0 = std::vector<int>(lod, lod + lod_t->numel());
} else {
level0 = ctx.Attr<std::vector<int>>("target_lod");
}
PADDLE_ENFORCE(level0.size() > 1UL,
"The size of target LoD should be greater than 1.");
PADDLE_ENFORCE(level0[0] == 0,
"Target LoD should be a vector starting from 0.");
PADDLE_ENFORCE(level0.back() == in->dims()[0],
"Target LoD should be a vector end with the "
"first dimension of Input(X).");
for (size_t i = 0; i < level0.size() - 1; ++i) {
PADDLE_ENFORCE(level0[i + 1] > level0[i],
"Target LoD should be an ascending vector.");
}
out->ShareDataWith(*in);
// cast level0 to size_t
std::vector<size_t> ulevel0(level0.size(), 0);
std::transform(level0.begin(), level0.end(), ulevel0.begin(),
[](int a) { return static_cast<size_t>(a); });
framework::LoD target_lod;
target_lod.push_back(ulevel0);
out->set_lod(target_lod);
}
};
template <typename Place, typename T>
class LoDResetGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
d_x->ShareDataWith(*d_out);
}
};
} // namespace operators
} // namespace paddle
...@@ -27,15 +27,15 @@ template <typename PoolProcess, typename T> ...@@ -27,15 +27,15 @@ template <typename PoolProcess, typename T>
class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> { class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& paddings, PoolProcess pool_process) { PoolProcess pool_process, framework::Tensor* output) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
const int output_channels = output.dims()[1]; const int output_channels = output->dims()[1];
const int output_height = output.dims()[2]; const int output_height = output->dims()[2];
const int output_width = output.dims()[3]; const int output_width = output->dims()[3];
const int ksize_height = ksize[0]; const int ksize_height = ksize[0];
const int ksize_width = ksize[1]; const int ksize_width = ksize[1];
const int stride_height = strides[0]; const int stride_height = strides[0];
...@@ -47,7 +47,7 @@ class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> { ...@@ -47,7 +47,7 @@ class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> {
const int output_stride = output_height * output_width; const int output_stride = output_height * output_width;
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace()); T* output_data = output->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -87,11 +87,12 @@ template <typename PoolProcess, class T> ...@@ -87,11 +87,12 @@ template <typename PoolProcess, class T>
class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> { class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings, std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_grad_process) { PoolProcess pool_grad_process,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
...@@ -110,7 +111,7 @@ class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> { ...@@ -110,7 +111,7 @@ class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> {
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
const T* output_data = output.data<T>(); const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>(); const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -154,10 +155,11 @@ template <class T> ...@@ -154,10 +155,11 @@ template <class T>
class MaxPool2dGradFunctor<platform::CPUPlace, T> { class MaxPool2dGradFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) { std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
...@@ -176,7 +178,7 @@ class MaxPool2dGradFunctor<platform::CPUPlace, T> { ...@@ -176,7 +178,7 @@ class MaxPool2dGradFunctor<platform::CPUPlace, T> {
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
const T* output_data = output.data<T>(); const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>(); const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -240,17 +242,17 @@ template <typename PoolProcess, class T> ...@@ -240,17 +242,17 @@ template <typename PoolProcess, class T>
class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> { class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& paddings, PoolProcess pool_process) { PoolProcess pool_process, framework::Tensor* output) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_depth = input.dims()[2]; const int input_depth = input.dims()[2];
const int input_height = input.dims()[3]; const int input_height = input.dims()[3];
const int input_width = input.dims()[4]; const int input_width = input.dims()[4];
const int output_channels = output.dims()[1]; const int output_channels = output->dims()[1];
const int output_depth = output.dims()[2]; const int output_depth = output->dims()[2];
const int output_height = output.dims()[3]; const int output_height = output->dims()[3];
const int output_width = output.dims()[4]; const int output_width = output->dims()[4];
const int ksize_depth = ksize[0]; const int ksize_depth = ksize[0];
const int ksize_height = ksize[1]; const int ksize_height = ksize[1];
const int ksize_width = ksize[2]; const int ksize_width = ksize[2];
...@@ -265,7 +267,7 @@ class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> { ...@@ -265,7 +267,7 @@ class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> {
const int output_stride = output_depth * output_height * output_width; const int output_stride = output_depth * output_height * output_width;
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace()); T* output_data = output->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -315,11 +317,12 @@ template <typename PoolProcess, class T> ...@@ -315,11 +317,12 @@ template <typename PoolProcess, class T>
class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> { class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings, std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_grad_process) { PoolProcess pool_grad_process,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_depth = input.dims()[2]; const int input_depth = input.dims()[2];
const int input_height = input.dims()[3]; const int input_height = input.dims()[3];
...@@ -343,7 +346,7 @@ class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> { ...@@ -343,7 +346,7 @@ class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> {
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
const T* output_data = output.data<T>(); const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>(); const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -398,10 +401,11 @@ template <class T> ...@@ -398,10 +401,11 @@ template <class T>
class MaxPool3dGradFunctor<platform::CPUPlace, T> { class MaxPool3dGradFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) { std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_depth = input.dims()[2]; const int input_depth = input.dims()[2];
const int input_height = input.dims()[3]; const int input_height = input.dims()[3];
...@@ -425,7 +429,7 @@ class MaxPool3dGradFunctor<platform::CPUPlace, T> { ...@@ -425,7 +429,7 @@ class MaxPool3dGradFunctor<platform::CPUPlace, T> {
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
const T* output_data = output.data<T>(); const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>(); const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -498,15 +502,15 @@ template <typename T> ...@@ -498,15 +502,15 @@ template <typename T>
class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> { class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
framework::Tensor& mask, std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& strides, std::vector<int>& paddings) { framework::Tensor* output, framework::Tensor* mask) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_height = input.dims()[2]; const int input_height = input.dims()[2];
const int input_width = input.dims()[3]; const int input_width = input.dims()[3];
const int output_channels = output.dims()[1]; const int output_channels = output->dims()[1];
const int output_height = output.dims()[2]; const int output_height = output->dims()[2];
const int output_width = output.dims()[3]; const int output_width = output->dims()[3];
const int ksize_height = ksize[0]; const int ksize_height = ksize[0];
const int ksize_width = ksize[1]; const int ksize_width = ksize[1];
const int stride_height = strides[0]; const int stride_height = strides[0];
...@@ -517,8 +521,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> { ...@@ -517,8 +521,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
const int output_stride = output_height * output_width; const int output_stride = output_height * output_width;
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace()); T* output_data = output->mutable_data<T>(context.GetPlace());
T* mask_data = mask.mutable_data<T>(context.GetPlace()); T* mask_data = mask->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -563,13 +567,13 @@ template <typename T> ...@@ -563,13 +567,13 @@ template <typename T>
class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> { class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize, const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) { std::vector<int>& strides, std::vector<int>& paddings,
const int batch_size = input_grad.dims()[0]; framework::Tensor* input_grad) {
const int input_height = input_grad.dims()[2]; const int batch_size = input_grad->dims()[0];
const int input_width = input_grad.dims()[3]; const int input_height = input_grad->dims()[2];
const int input_width = input_grad->dims()[3];
const int output_channels = output_grad.dims()[1]; const int output_channels = output_grad.dims()[1];
const int output_height = output_grad.dims()[2]; const int output_height = output_grad.dims()[2];
const int output_width = output_grad.dims()[3]; const int output_width = output_grad.dims()[3];
...@@ -578,7 +582,7 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> { ...@@ -578,7 +582,7 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
const T* mask_data = mask.data<T>(); const T* mask_data = mask.data<T>();
const T* output_grad_data = output_grad.data<T>(); const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
for (int n = 0; n < batch_size; ++n) { for (int n = 0; n < batch_size; ++n) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -612,17 +616,17 @@ template <typename T> ...@@ -612,17 +616,17 @@ template <typename T>
class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> { class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
framework::Tensor& mask, std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& strides, std::vector<int>& paddings) { framework::Tensor* output, framework::Tensor* mask) {
const int batch_size = input.dims()[0]; const int batch_size = input.dims()[0];
const int input_depth = input.dims()[2]; const int input_depth = input.dims()[2];
const int input_height = input.dims()[3]; const int input_height = input.dims()[3];
const int input_width = input.dims()[4]; const int input_width = input.dims()[4];
const int output_channels = output.dims()[1]; const int output_channels = output->dims()[1];
const int output_depth = output.dims()[2]; const int output_depth = output->dims()[2];
const int output_height = output.dims()[3]; const int output_height = output->dims()[3];
const int output_width = output.dims()[4]; const int output_width = output->dims()[4];
const int ksize_depth = ksize[0]; const int ksize_depth = ksize[0];
const int ksize_height = ksize[1]; const int ksize_height = ksize[1];
const int ksize_width = ksize[2]; const int ksize_width = ksize[2];
...@@ -636,8 +640,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> { ...@@ -636,8 +640,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
const int output_stride = output_depth * output_height * output_width; const int output_stride = output_depth * output_height * output_width;
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace()); T* output_data = output->mutable_data<T>(context.GetPlace());
T* mask_data = mask.mutable_data<T>(context.GetPlace()); T* mask_data = mask->mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) { for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
...@@ -691,14 +695,14 @@ template <typename T> ...@@ -691,14 +695,14 @@ template <typename T>
class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> { class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize, const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) { std::vector<int>& strides, std::vector<int>& paddings,
const int batch_size = input_grad.dims()[0]; framework::Tensor* input_grad) {
const int input_depth = input_grad.dims()[2]; const int batch_size = input_grad->dims()[0];
const int input_height = input_grad.dims()[3]; const int input_depth = input_grad->dims()[2];
const int input_width = input_grad.dims()[4]; const int input_height = input_grad->dims()[3];
const int input_width = input_grad->dims()[4];
const int output_channels = output_grad.dims()[1]; const int output_channels = output_grad.dims()[1];
const int output_depth = output_grad.dims()[2]; const int output_depth = output_grad.dims()[2];
const int output_height = output_grad.dims()[3]; const int output_height = output_grad.dims()[3];
...@@ -708,7 +712,7 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> { ...@@ -708,7 +712,7 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
const T* mask_data = mask.data<T>(); const T* mask_data = mask.data<T>();
const T* output_grad_data = output_grad.data<T>(); const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
for (int n = 0; n < batch_size; ++n) { for (int n = 0; n < batch_size; ++n) {
for (int c = 0; c < output_channels; ++c) { for (int c = 0; c < output_channels; ++c) {
......
此差异已折叠。
...@@ -88,60 +88,62 @@ template <typename Place, typename PoolProcess, typename T> ...@@ -88,60 +88,62 @@ template <typename Place, typename PoolProcess, typename T>
class Pool2dFunctor { class Pool2dFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& paddings, PoolProcess pool_compute); PoolProcess pool_compute, framework::Tensor* output);
}; };
template <typename Place, typename PoolProcess, typename T> template <typename Place, typename PoolProcess, typename T>
class Pool2dGradFunctor { class Pool2dGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings, std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_compute); PoolProcess pool_compute, framework::Tensor* input_grad);
}; };
template <typename Place, class T> template <typename Place, class T>
class MaxPool2dGradFunctor { class MaxPool2dGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings); std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
}; };
template <typename Place, typename PoolProcess, typename T> template <typename Place, typename PoolProcess, typename T>
class Pool3dFunctor { class Pool3dFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& paddings, PoolProcess pool_compute); PoolProcess pool_compute, framework::Tensor* output);
}; };
template <typename Place, typename PoolProcess, typename T> template <typename Place, typename PoolProcess, typename T>
class Pool3dGradFunctor { class Pool3dGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings, std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_compute); PoolProcess pool_compute, framework::Tensor* input_grad);
}; };
template <typename Place, class T> template <typename Place, class T>
class MaxPool3dGradFunctor { class MaxPool3dGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& input,
const framework::Tensor& output, const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize, const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings); std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
}; };
/* /*
...@@ -155,38 +157,38 @@ template <typename Place, typename T> ...@@ -155,38 +157,38 @@ template <typename Place, typename T>
class MaxPool2dWithIndexFunctor { class MaxPool2dWithIndexFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
framework::Tensor& mask, std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& strides, std::vector<int>& paddings); framework::Tensor* output, framework::Tensor* mask);
}; };
template <typename Place, typename T> template <typename Place, typename T>
class MaxPool2dWithIndexGradFunctor { class MaxPool2dWithIndexGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize, const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings); std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
}; };
template <typename Place, typename T> template <typename Place, typename T>
class MaxPool3dWithIndexFunctor { class MaxPool3dWithIndexFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output, const framework::Tensor& input, std::vector<int>& ksize,
framework::Tensor& mask, std::vector<int>& ksize, std::vector<int>& strides, std::vector<int>& paddings,
std::vector<int>& strides, std::vector<int>& paddings); framework::Tensor* output, framework::Tensor* mask);
}; };
template <typename Place, typename T> template <typename Place, typename T>
class MaxPool3dWithIndexGradFunctor { class MaxPool3dWithIndexGradFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad, const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize, const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings); std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
}; };
} // namespace math } // namespace math
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
namespace paddle {
namespace operators {
using LoD = framework::LoD;
class MergeLoDTensorOp : public framework::OperatorBase {
public:
MergeLoDTensorOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>();
auto &in_false =
scope.FindVar(Input("InFalse"))->Get<framework::LoDTensor>();
auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
auto level = static_cast<size_t>(Attr<int>("level"));
auto &mask_dim = mask.dims();
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
if (platform::is_cpu_place(mask.place())) {
cpu_mask->ShareDataWith(mask);
} else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
cpu_mask->CopyFrom(mask, platform::CPUPlace(), dev_ctx);
#else
PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
}
auto *mask_data = cpu_mask->data<bool>();
int rank = in_true.dims().size();
platform::Place place = in_true.place();
std::type_index data_type = in_true.type();
framework::DDim in_true_dims =
framework::slice_ddim(in_true.dims(), 1, rank);
int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];
auto in_true_dim_vec = framework::vectorize(in_true_dims);
in_true_dim_vec.insert(in_true_dim_vec.begin(), batch_size);
framework::DDim out_dims = framework::make_ddim(in_true_dim_vec);
out->Resize(out_dims);
out->mutable_data(place, data_type);
auto *out_lod = out->mutable_lod();
out_lod->clear();
size_t out_offset = 0;
// Build LoDTensor `out`
size_t in_true_idx = 0;
size_t in_false_idx = 0;
for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
const framework::LoDTensor *input = nullptr;
size_t *in_idx = nullptr;
if (static_cast<int>(mask_data[i]) == 0) {
input = &in_false;
in_idx = &in_false_idx;
} else {
input = &in_true;
in_idx = &in_true_idx;
}
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
input->lod(), *in_idx, (*in_idx) + 1, 0);
auto &lod_length = lod_and_offset.first;
framework::AppendLoD(out_lod, lod_length);
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
PADDLE_ENFORCE_GE(end_offset, start_offset);
size_t len = end_offset - start_offset;
if (len == 0) {
continue;
}
out->Slice(out_offset, out_offset + len)
.CopyFrom(input->Slice(start_offset, end_offset), place, dev_ctx);
out_offset += len;
(*in_idx) += 1;
}
for (size_t i = 0; i < level; i++) {
out_lod->insert(out_lod->begin(), x.lod()[i]);
}
}
};
class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
MergeLoDTensorOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input LoDTensor, contains complete lod information to "
"construct the output");
AddInput("Mask", "A bool column vector which mask the input");
AddInput("InTrue", "The True branch to be merged");
AddInput("InFalse", "The False branch to be merged");
AddOutput("Out", "The merged output LoDTensor");
AddAttr<int>("level", "(int) the specific lod level to rank.")
.SetDefault(0)
.EqualGreaterThan(0);
AddComment(
R"DOC(
Merge True and False branches of LoDTensor into a single Output,
with a mask at certain lod level. X is used to obtain complete
lod information. Please refer to SplitLoDTensorOp.)DOC");
}
};
class MergeLoDTensorInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"),
"MergeLoDTensorOp must has input X.");
PADDLE_ENFORCE(context->HasInput("Mask"),
"MergeLoDTensorOp must has input Mask.");
PADDLE_ENFORCE(context->HasInput("InTrue"),
"MergeLoDTensorOp must has input InTrue.");
PADDLE_ENFORCE(context->HasInput("InFalse"),
"MergeLoDTensorOp must has input InFalse.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"MergeLoDTensorOp must has output Out");
auto mask_dim = context->GetInputDim("Mask");
PADDLE_ENFORCE_EQ(mask_dim.size(), 2);
PADDLE_ENFORCE_EQ(mask_dim[1], 1);
context->SetOutputDim("Out", context->GetInputDim("InTrue"));
}
};
class MergeLoDTensorGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *grad_op = new framework::OpDescBind();
grad_op->SetType("split_lod_tensor");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetInput("Mask", Input("Mask"));
grad_op->SetOutput("OutTrue", InputGrad("InTrue"));
grad_op->SetOutput("OutFalse", InputGrad("InFalse"));
grad_op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_lod_tensor, ops::MergeLoDTensorOp,
ops::MergeLoDTensorOpProtoMaker,
ops::MergeLoDTensorInferShape, ops::MergeLoDTensorGradMaker);
...@@ -75,16 +75,16 @@ class PoolKernel : public framework::OpKernel<T> { ...@@ -75,16 +75,16 @@ class PoolKernel : public framework::OpKernel<T> {
Place, paddle::operators::math::MaxPool<T>, T> Place, paddle::operators::math::MaxPool<T>, T>
pool2d_forward; pool2d_forward;
paddle::operators::math::MaxPool<T> pool_process; paddle::operators::math::MaxPool<T> pool_process;
pool2d_forward(context.device_context(), *in_x, *out, ksize, strides, pool2d_forward(context.device_context(), *in_x, ksize, strides,
paddings, pool_process); paddings, pool_process, out);
} else if (pooling_type == "avg") { } else if (pooling_type == "avg") {
paddle::operators::math::Pool2dFunctor< paddle::operators::math::Pool2dFunctor<
Place, paddle::operators::math::AvgPool<T>, T> Place, paddle::operators::math::AvgPool<T>, T>
pool2d_forward; pool2d_forward;
paddle::operators::math::AvgPool<T> pool_process; paddle::operators::math::AvgPool<T> pool_process;
pool2d_forward(context.device_context(), *in_x, *out, ksize, strides, pool2d_forward(context.device_context(), *in_x, ksize, strides,
paddings, pool_process); paddings, pool_process, out);
} }
} break; } break;
case 3: { case 3: {
...@@ -93,15 +93,15 @@ class PoolKernel : public framework::OpKernel<T> { ...@@ -93,15 +93,15 @@ class PoolKernel : public framework::OpKernel<T> {
Place, paddle::operators::math::MaxPool<T>, T> Place, paddle::operators::math::MaxPool<T>, T>
pool3d_forward; pool3d_forward;
paddle::operators::math::MaxPool<T> pool_process; paddle::operators::math::MaxPool<T> pool_process;
pool3d_forward(context.device_context(), *in_x, *out, ksize, strides, pool3d_forward(context.device_context(), *in_x, ksize, strides,
paddings, pool_process); paddings, pool_process, out);
} else if (pooling_type == "avg") { } else if (pooling_type == "avg") {
paddle::operators::math::Pool3dFunctor< paddle::operators::math::Pool3dFunctor<
Place, paddle::operators::math::AvgPool<T>, T> Place, paddle::operators::math::AvgPool<T>, T>
pool3d_forward; pool3d_forward;
paddle::operators::math::AvgPool<T> pool_process; paddle::operators::math::AvgPool<T> pool_process;
pool3d_forward(context.device_context(), *in_x, *out, ksize, strides, pool3d_forward(context.device_context(), *in_x, ksize, strides,
paddings, pool_process); paddings, pool_process, out);
} }
} break; } break;
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
...@@ -142,30 +142,30 @@ class PoolGradKernel : public framework::OpKernel<T> { ...@@ -142,30 +142,30 @@ class PoolGradKernel : public framework::OpKernel<T> {
if (pooling_type == "max") { if (pooling_type == "max") {
paddle::operators::math::MaxPool2dGradFunctor<Place, T> paddle::operators::math::MaxPool2dGradFunctor<Place, T>
pool2d_backward; pool2d_backward;
pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out, pool2d_backward(context.device_context(), *in_x, *out, *out_grad,
*out_grad, ksize, strides, paddings); ksize, strides, paddings, in_x_grad);
} else if (pooling_type == "avg") { } else if (pooling_type == "avg") {
paddle::operators::math::Pool2dGradFunctor< paddle::operators::math::Pool2dGradFunctor<
Place, paddle::operators::math::AvgPoolGrad<T>, T> Place, paddle::operators::math::AvgPoolGrad<T>, T>
pool2d_backward; pool2d_backward;
paddle::operators::math::AvgPoolGrad<T> pool_process; paddle::operators::math::AvgPoolGrad<T> pool_process;
pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out, pool2d_backward(context.device_context(), *in_x, *out, *out_grad,
*out_grad, ksize, strides, paddings, pool_process); ksize, strides, paddings, pool_process, in_x_grad);
} }
} break; } break;
case 3: { case 3: {
if (pooling_type == "max") { if (pooling_type == "max") {
paddle::operators::math::MaxPool3dGradFunctor<Place, T> paddle::operators::math::MaxPool3dGradFunctor<Place, T>
pool3d_backward; pool3d_backward;
pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out, pool3d_backward(context.device_context(), *in_x, *out, *out_grad,
*out_grad, ksize, strides, paddings); ksize, strides, paddings, in_x_grad);
} else if (pooling_type == "avg") { } else if (pooling_type == "avg") {
paddle::operators::math::Pool3dGradFunctor< paddle::operators::math::Pool3dGradFunctor<
Place, paddle::operators::math::AvgPoolGrad<T>, T> Place, paddle::operators::math::AvgPoolGrad<T>, T>
pool3d_backward; pool3d_backward;
paddle::operators::math::AvgPoolGrad<T> pool_process; paddle::operators::math::AvgPoolGrad<T> pool_process;
pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out, pool3d_backward(context.device_context(), *in_x, *out, *out_grad,
*out_grad, ksize, strides, paddings, pool_process); ksize, strides, paddings, pool_process, in_x_grad);
} }
} break; } break;
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
......
...@@ -46,14 +46,14 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> { ...@@ -46,14 +46,14 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
case 2: { case 2: {
paddle::operators::math::MaxPool2dWithIndexFunctor<Place, T> paddle::operators::math::MaxPool2dWithIndexFunctor<Place, T>
pool2d_forward; pool2d_forward;
pool2d_forward(context.device_context(), *in_x, *out, *mask, ksize, pool2d_forward(context.device_context(), *in_x, ksize, strides,
strides, paddings); paddings, out, mask);
} break; } break;
case 3: { case 3: {
paddle::operators::math::MaxPool3dWithIndexFunctor<Place, T> paddle::operators::math::MaxPool3dWithIndexFunctor<Place, T>
pool3d_forward; pool3d_forward;
pool3d_forward(context.device_context(), *in_x, *out, *mask, ksize, pool3d_forward(context.device_context(), *in_x, ksize, strides,
strides, paddings); paddings, out, mask);
} break; } break;
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
} }
...@@ -88,14 +88,14 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> { ...@@ -88,14 +88,14 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
case 2: { case 2: {
paddle::operators::math::MaxPool2dWithIndexGradFunctor<Place, T> paddle::operators::math::MaxPool2dWithIndexGradFunctor<Place, T>
pool2d_backward; pool2d_backward;
pool2d_backward(device_ctx, *in_x_grad, *out_grad, *mask, ksize, pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides,
strides, paddings); paddings, in_x_grad);
} break; } break;
case 3: { case 3: {
paddle::operators::math::MaxPool3dWithIndexGradFunctor<Place, T> paddle::operators::math::MaxPool3dWithIndexGradFunctor<Place, T>
pool3d_backward; pool3d_backward;
pool3d_backward(device_ctx, *in_x_grad, *out_grad, *mask, ksize, pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides,
strides, paddings); paddings, in_x_grad);
} break; } break;
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
} }
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#pragma once #pragma once
#include "glog/logging.h"
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
...@@ -26,6 +27,10 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor, ...@@ -26,6 +27,10 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>; using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
struct SumFunctor { struct SumFunctor {
template <typename Place, typename X, typename Y, typename Dim> template <typename Place, typename X, typename Y, typename Dim>
void operator()(const Place& place, X& x, Y& y, const Dim& dim) { void operator()(const Place& place, X& x, Y& y, const Dim& dim) {
...@@ -133,10 +138,17 @@ class ReduceKernel : public framework::OpKernel<T> { ...@@ -133,10 +138,17 @@ class ReduceKernel : public framework::OpKernel<T> {
dims_vector.erase(dims_vector.begin() + dim); dims_vector.erase(dims_vector.begin() + dim);
dims = framework::make_ddim(dims_vector); dims = framework::make_ddim(dims_vector);
} }
auto out = EigenTensor < T, D == 1 ? 1 : (D - 1) > ::From(*output, dims);
auto& place = context.GetEigenDevice<Place>(); auto& place = context.GetEigenDevice<Place>();
Functor functor; Functor functor;
functor(place, x, out, reduce_dim);
if (D == 1) {
auto out = EigenScalar<T>::From(*output);
functor(place, x, out, reduce_dim);
} else {
auto out = EigenTensor<T, (D - 1)>::From(*output, dims);
functor(place, x, out, reduce_dim);
}
} }
}; };
...@@ -186,13 +198,13 @@ class ReduceGradKernel : public framework::OpKernel<T> { ...@@ -186,13 +198,13 @@ class ReduceGradKernel : public framework::OpKernel<T> {
auto x_reduce = EigenTensor<T, D>::From(*input1, dims); auto x_reduce = EigenTensor<T, D>::From(*input1, dims);
auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims); auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims);
Eigen::array<int, D> braodcast_dim; Eigen::array<int, D> broadcast_dim;
for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1; for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1;
braodcast_dim[dim] = input0->dims()[dim]; broadcast_dim[dim] = input0->dims()[dim];
auto& place = context.GetEigenDevice<Place>(); auto& place = context.GetEigenDevice<Place>();
Functor functor; Functor functor;
functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim, functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim,
braodcast_dim[dim]); broadcast_dim[dim]);
} }
}; };
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
namespace paddle {
namespace operators {
struct CopyRange {
size_t begin;
size_t end;
};
using LoD = framework::LoD;
class SplitLoDTensorOp : public framework::OperatorBase {
public:
SplitLoDTensorOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void Run(const framework::Scope &scope,
const platform::DeviceContext &dev_ctx) const override {
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
auto *out_true =
scope.FindVar(Output("OutTrue"))->GetMutable<framework::LoDTensor>();
auto *out_false =
scope.FindVar(Output("OutFalse"))->GetMutable<framework::LoDTensor>();
auto level = static_cast<size_t>(Attr<int>("level"));
auto &x_lod = x.lod();
auto &mask_dim = mask.dims();
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
if (platform::is_cpu_place(mask.place())) {
cpu_mask->ShareDataWith(mask);
} else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
cpu_mask->CopyFrom(mask, platform::CPUPlace(), dev_ctx);
#else
PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
}
auto *mask_data = cpu_mask->data<bool>();
std::vector<std::vector<CopyRange>> copy_ranges(mask_dim[0]);
// set out_true/out_false lod
for (size_t t = 0; t < 2; t++) {
LoD *lod = nullptr;
if (t == 0) {
lod = out_false->mutable_lod();
} else {
lod = out_true->mutable_lod();
}
lod->clear();
for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
if (static_cast<size_t>(mask_data[i]) == t) {
size_t start_idx = i;
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
x_lod, start_idx, start_idx + 1, level);
auto &lod_length = lod_and_offset.first;
framework::AppendLoD(lod, lod_length);
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
}
}
}
for (size_t t = 0; t < 2; ++t) {
framework::LoDTensor *out;
if (t == 0) {
out = out_false;
} else {
out = out_true;
}
auto &ranges = copy_ranges[t];
size_t height = std::accumulate(
ranges.begin(), ranges.end(), 0UL,
[](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
auto x_dim = x.dims();
x_dim[0] = static_cast<int64_t>(height);
out->Resize(x_dim);
out->mutable_data(x.place(), x.type());
size_t offset = 0;
for (auto &each_range : ranges) {
size_t len = each_range.end - each_range.begin;
if (len == 0) {
continue;
}
// out[offset: offset+len] = x[each_range.begin: each_range.end]
out->Slice(static_cast<int>(offset), static_cast<int>(offset + len))
.CopyFrom(x.Slice(static_cast<int>(each_range.begin),
static_cast<int>(each_range.end)),
x.place(), dev_ctx);
offset += len;
}
}
}
};
class SplitLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
SplitLoDTensorOpProtoMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input LoDTensor");
AddInput("Mask", "A bool column vector which mask the input");
AddOutput("OutTrue", "True branch of input LoDTensor");
AddOutput("OutFalse", "False branch of input LoDTensor");
AddAttr<int>("level", "(int) the specific lod level to split.")
.SetDefault(0)
.EqualGreaterThan(0);
AddComment(
R"DOC(
Split a LoDTensor with a Mask at certain level. The input LoDTensor
has 3 sequence at certain lod level. The Mask is a bool column vector,
such as [0, 1, 0] at the same level. The first and third sequence will
be send to False Output LoDTensor; whereas the second sequence will
be send to True Output LoDTensor. Please refer to MergeLoDTensorOp.)DOC");
}
};
class SplitLoDTensorInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"),
"SplitLoDTensorOp must has input X.");
PADDLE_ENFORCE(context->HasInput("Mask"),
"SplitLoDTensorOp must has input Mask.");
PADDLE_ENFORCE(context->HasOutput("OutTrue"),
"SplitLoDTensorOp must has output OutTrue.");
PADDLE_ENFORCE(context->HasOutput("OutFalse"),
"SplitLoDTensorOp must has output OutFalse.");
auto mask_dim = context->GetInputDim("Mask");
PADDLE_ENFORCE_EQ(mask_dim.size(), 2);
PADDLE_ENFORCE_EQ(mask_dim[1], 1);
context->SetOutputDim("OutTrue", context->GetInputDim("X"));
context->SetOutputDim("OutFalse", context->GetInputDim("X"));
}
};
class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDescBind> Apply() const override {
auto *grad_op = new framework::OpDescBind();
grad_op->SetType("merge_lod_tensor");
grad_op->SetInput("InTrue", OutputGrad("OutTrue"));
grad_op->SetInput("InFalse", OutputGrad("OutFalse"));
grad_op->SetInput("Mask", Input("Mask"));
grad_op->SetInput("X", Input("X"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(split_lod_tensor, ops::SplitLoDTensorOp,
ops::SplitLoDTensorOpProtoMaker,
ops::SplitLoDTensorInferShape,
ops::SplitLoDTensorArrayGradMaker);
...@@ -29,7 +29,7 @@ class SquaredL2NormKernel : public framework::OpKernel<T> { ...@@ -29,7 +29,7 @@ class SquaredL2NormKernel : public framework::OpKernel<T> {
Out->mutable_data<T>(context.GetPlace()); Out->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X); auto x = framework::EigenVector<T>::Flatten(*X);
auto out = framework::EigenVector<T>::Flatten(*Out); auto out = framework::EigenScalar<T>::From(*Out);
auto place = context.GetEigenDevice<Place>(); auto place = context.GetEigenDevice<Place>();
out.device(place) = x.square().sum(); out.device(place) = x.square().sum();
......
...@@ -200,7 +200,10 @@ void Parameter::setMat(ParameterType pType, int matType) { ...@@ -200,7 +200,10 @@ void Parameter::setMat(ParameterType pType, int matType) {
false, false,
useGpu_); useGpu_);
} }
} else if (matType == MAT_NORMAL_SHARED) { }
#ifndef PADDLE_MOBILE_INFERENCE
// NOLINTNEXTLINE
else if (matType == MAT_NORMAL_SHARED) {
CHECK_EQ(height * width, bufs_[pType]->getSize()); CHECK_EQ(height * width, bufs_[pType]->getSize());
size_t blockNum = 0; size_t blockNum = 0;
CHECK(isGradShared(&blockNum)); CHECK(isGradShared(&blockNum));
...@@ -259,7 +262,10 @@ void Parameter::setMat(ParameterType pType, int matType) { ...@@ -259,7 +262,10 @@ void Parameter::setMat(ParameterType pType, int matType) {
} else if (matType == MAT_SPARSE_ROW_AUTO_GROW) { } else if (matType == MAT_SPARSE_ROW_AUTO_GROW) {
CHECK(isGradSparseUpdate()); CHECK(isGradSparseUpdate());
mats_[pType] = std::make_shared<SparseAutoGrowRowCpuMatrix>(height, width); mats_[pType] = std::make_shared<SparseAutoGrowRowCpuMatrix>(height, width);
} else { }
#endif
// NOLINTNEXTLINE
else {
LOG(FATAL) << "Unsupported mat type" << matType; LOG(FATAL) << "Unsupported mat type" << matType;
} }
} }
......
...@@ -42,6 +42,9 @@ limitations under the License. */ ...@@ -42,6 +42,9 @@ limitations under the License. */
#include "paddle/platform/gpu_info.h" #include "paddle/platform/gpu_info.h"
#endif #endif
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
namespace paddle { namespace paddle {
namespace pybind { namespace pybind {
static size_t UniqueIntegerGenerator(const std::string &prefix) { static size_t UniqueIntegerGenerator(const std::string &prefix) {
......
...@@ -33,6 +33,7 @@ MatrixPtr makeRandomSparseMatrix(size_t height, ...@@ -33,6 +33,7 @@ MatrixPtr makeRandomSparseMatrix(size_t height,
bool withValue, bool withValue,
bool useGpu, bool useGpu,
bool equalNnzPerSample) { bool equalNnzPerSample) {
#ifndef PADDLE_MOBILE_INFERENCE
std::vector<int64_t> ids(height); std::vector<int64_t> ids(height);
std::vector<int64_t> indices(height + 1); std::vector<int64_t> indices(height + 1);
indices[0] = 0; indices[0] = 0;
...@@ -84,6 +85,8 @@ MatrixPtr makeRandomSparseMatrix(size_t height, ...@@ -84,6 +85,8 @@ MatrixPtr makeRandomSparseMatrix(size_t height,
} }
return mat; return mat;
} }
#endif
return nullptr;
} }
void generateSequenceStartPositions(size_t batchSize, void generateSequenceStartPositions(size_t batchSize,
......
...@@ -37,10 +37,10 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ...@@ -37,10 +37,10 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
${CMAKE_CURRENT_BINARY_DIR}/setup.py) ${CMAKE_CURRENT_BINARY_DIR}/setup.py)
add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/core.so
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/core.so
DEPENDS paddle_pybind) DEPENDS paddle_pybind)
add_custom_target(copy_paddle_pybind ALL DEPENDS ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so) add_custom_target(copy_paddle_pybind ALL DEPENDS ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/core.so)
add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
...@@ -66,7 +66,7 @@ if (WITH_TESTING) ...@@ -66,7 +66,7 @@ if (WITH_TESTING)
add_subdirectory(paddle/v2/tests) add_subdirectory(paddle/v2/tests)
add_subdirectory(paddle/v2/reader/tests) add_subdirectory(paddle/v2/reader/tests)
add_subdirectory(paddle/v2/plot/tests) add_subdirectory(paddle/v2/plot/tests)
add_subdirectory(paddle/v2/framework/tests) add_subdirectory(paddle/v2/fluid/tests)
endif() endif()
endif() endif()
install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR} install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR}
......
...@@ -1200,8 +1200,14 @@ def TestData(data_config, async_load_data=None): ...@@ -1200,8 +1200,14 @@ def TestData(data_config, async_load_data=None):
#caffe_mode: compute the output size using floor instead of ceil, #caffe_mode: compute the output size using floor instead of ceil,
# which is consistent of caffe and CuDNN's convention. # which is consistent of caffe and CuDNN's convention.
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode): def cnn_output_size(img_size,
output = (2 * padding + img_size - filter_size) / float(stride) filter_size,
padding,
stride,
caffe_mode,
dilation=1):
filter_s = (filter_size - 1) * dilation + 1
output = (2 * padding + img_size - filter_s) / float(stride)
if caffe_mode: if caffe_mode:
return 1 + int(math.floor(output)) return 1 + int(math.floor(output))
else: else:
...@@ -1210,8 +1216,14 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode): ...@@ -1210,8 +1216,14 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
#calcualte image_size based on output_size for de-convolution (ConvTransLayer). #calcualte image_size based on output_size for de-convolution (ConvTransLayer).
#It is the reverse function of cnn_output_size #It is the reverse function of cnn_output_size
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode): def cnn_image_size(output_size,
img_size = (output_size - 1) * stride + filter_size - 2 * padding filter_size,
padding,
stride,
caffe_mode,
dilation=1):
filter_s = (filter_size - 1) * dilation + 1
img_size = (output_size - 1) * stride + filter_s - 2 * padding
if not caffe_mode: if not caffe_mode:
img_size = img_size + 1 img_size = img_size + 1
return img_size return img_size
...@@ -1253,9 +1265,9 @@ def parse_bilinear(bilinear, input_layer_name, bilinear_conf): ...@@ -1253,9 +1265,9 @@ def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode): def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
pool_conf.pool_type = pool.pool_type pool_conf.pool_type = pool.pool_type
config_assert(pool.pool_type in [ config_assert(pool.pool_type in [
'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool' 'max-projection', 'avg-projection', 'max-pool-with-mask', 'cudnn-max-pool', 'cudnn-avg-pool'
], "pool-type %s is not in " ], "pool-type %s is not in " \
"['max-projection', 'avg-projection', " "['max-projection', 'avg-projection', 'max-pool-with-mask'," \
"'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type) "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
pool_conf.channels = pool.channels pool_conf.channels = pool.channels
...@@ -1376,6 +1388,12 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False): ...@@ -1376,6 +1388,12 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
conv_conf.stride_y = conv.stride_y conv_conf.stride_y = conv.stride_y
conv_conf.groups = conv.groups conv_conf.groups = conv.groups
conv_conf.caffe_mode = conv.caffe_mode conv_conf.caffe_mode = conv.caffe_mode
if not conv.dilation:
conv.dilation = 1
conv.dilation_y = 1
else:
conv_conf.dilation = conv.dilation
conv_conf.dilation_y = conv.dilation_y
if not trans: if not trans:
conv_conf.filter_channels = conv.channels / conv.groups conv_conf.filter_channels = conv.channels / conv.groups
...@@ -1383,20 +1401,20 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False): ...@@ -1383,20 +1401,20 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
get_img_size(input_layer_name, conv.channels) get_img_size(input_layer_name, conv.channels)
conv_conf.output_x = cnn_output_size( conv_conf.output_x = cnn_output_size(
conv_conf.img_size, conv_conf.filter_size, conv_conf.padding, conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
conv_conf.stride, conv_conf.caffe_mode) conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
conv_conf.output_y = cnn_output_size( conv_conf.output_y = cnn_output_size(
conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y, conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
conv_conf.stride_y, conv_conf.caffe_mode) conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
else: else:
conv_conf.filter_channels = num_filters / conv.groups conv_conf.filter_channels = num_filters / conv.groups
conv_conf.output_x, conv_conf.output_y = \ conv_conf.output_x, conv_conf.output_y = \
get_img_size(input_layer_name, conv.channels) get_img_size(input_layer_name, conv.channels)
conv_conf.img_size = cnn_image_size( conv_conf.img_size = cnn_image_size(
conv_conf.output_x, conv_conf.filter_size, conv_conf.padding, conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
conv_conf.stride, conv_conf.caffe_mode) conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
conv_conf.img_size_y = cnn_image_size( conv_conf.img_size_y = cnn_image_size(
conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y, conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
conv_conf.stride_y, conv_conf.caffe_mode) conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
#caffe_mode: compute the output size using floor instead of ceil, #caffe_mode: compute the output size using floor instead of ceil,
......
...@@ -681,34 +681,42 @@ def lstmemory_unit(input, ...@@ -681,34 +681,42 @@ def lstmemory_unit(input,
state_act=TanhActivation()) state_act=TanhActivation())
:param input: input layer. :param input: Input layer.
:type input: LayerOutput :type input: LayerOutput
:param out_memory: output of previous time step :param out_memory: The output of previous time step.
:type out_memory: LayerOutput | None :type out_memory: LayerOutput | None
:param name: lstmemory unit name. :param name: The lstmemory unit name.
:type name: basestring :type name: basestring
:param size: lstmemory unit size. :param size: The lstmemory unit size.
:type size: int :type size: int
:param param_attr: parameter attribute, None means default attribute. :param param_attr: The parameter attribute for the weights in
input to hidden projection.
None means default attribute.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:param act: last activiation type of lstm. :param act: The last activiation type of lstm.
:type act: BaseActivation :type act: BaseActivation
:param gate_act: gate activiation type of lstm. :param gate_act: The gate activiation type of lstm.
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param state_act: state activiation type of lstm. :param state_act: The state activiation type of lstm.
:type state_act: BaseActivation :type state_act: BaseActivation
:param input_proj_bias_attr: bias attribute for input to hidden projection. :param input_proj_bias_attr: The parameter attribute for the bias in
False means no bias, None means default bias. input to hidden projection.
:type input_proj_bias_attr: ParameterAttribute|False|None False or None means no bias.
:param input_proj_layer_attr: extra layer attribute for input to hidden If this parameter is set to True,
projection of the LSTM unit, such as dropout, error clipping. the bias is initialized to zero.
:type input_proj_bias_attr: ParameterAttribute|bool|None
:param input_proj_layer_attr: The extra layer attribute for
input to hidden projection of the LSTM unit,
such as dropout, error clipping.
:type input_proj_layer_attr: ExtraLayerAttribute :type input_proj_layer_attr: ExtraLayerAttribute
:param lstm_bias_attr: bias parameter attribute of lstm layer. :param lstm_bias_attr: The parameter attribute for the bias in lstm layer.
False means no bias, None means default bias. False or None means no bias.
:type lstm_bias_attr: ParameterAttribute|False|None If this parameter is set to True,
:param lstm_layer_attr: extra attribute of lstm layer. the bias is initialized to zero.
:type lstm_bias_attr: ParameterAttribute|True|None
:param lstm_layer_attr: The extra attribute of lstm layer.
:type lstm_layer_attr: ExtraLayerAttribute :type lstm_layer_attr: ExtraLayerAttribute
:return: lstmemory unit name. :return: The lstmemory unit name.
:rtype: LayerOutput :rtype: LayerOutput
""" """
if size is None: if size is None:
...@@ -786,34 +794,42 @@ def lstmemory_group(input, ...@@ -786,34 +794,42 @@ def lstmemory_group(input,
gate_act=SigmoidActivation(), gate_act=SigmoidActivation(),
state_act=TanhActivation()) state_act=TanhActivation())
:param input: input layer. :param input: Input layer.
:type input: LayerOutput :type input: LayerOutput
:param size: lstmemory group size. :param size: The lstmemory group size.
:type size: int :type size: int
:param name: name of lstmemory group. :param name: The name of lstmemory group.
:type name: basestring :type name: basestring
:param out_memory: output of previous time step. :param out_memory: The output of previous time step.
:type out_memory: LayerOutput | None :type out_memory: LayerOutput | None
:param reverse: process the input in a reverse order or not. :param reverse: Process the input in a reverse order or not.
:type reverse: bool :type reverse: bool
:param param_attr: parameter attribute, None means default attribute. :param param_attr: The parameter attribute for the weights in
input to hidden projection.
None means default attribute.
:type param_attr: ParameterAttribute :type param_attr: ParameterAttribute
:param act: last activiation type of lstm. :param act: The last activiation type of lstm.
:type act: BaseActivation :type act: BaseActivation
:param gate_act: gate activiation type of lstm. :param gate_act: The gate activiation type of lstm.
:type gate_act: BaseActivation :type gate_act: BaseActivation
:param state_act: state activiation type of lstm. :param state_act: The state activiation type of lstm.
:type state_act: BaseActivation :type state_act: BaseActivation
:param lstm_bias_attr: bias parameter attribute of lstm layer. :param input_proj_bias_attr: The parameter attribute for the bias in
False means no bias, None means default bias. input to hidden projection.
:type lstm_bias_attr: ParameterAttribute|False|None False or None means no bias.
:param input_proj_bias_attr: bias attribute for input to hidden projection. If this parameter is set to True,
False means no bias, None means default bias. the bias is initialized to zero.
:type input_proj_bias_attr: ParameterAttribute|False|None :type input_proj_bias_attr: ParameterAttribute|bool|None
:param input_proj_layer_attr: extra layer attribute for input to hidden :param input_proj_layer_attr: The extra layer attribute for
projection of the LSTM unit, such as dropout, error clipping. input to hidden projection of the LSTM unit,
such as dropout, error clipping.
:type input_proj_layer_attr: ExtraLayerAttribute :type input_proj_layer_attr: ExtraLayerAttribute
:param lstm_layer_attr: lstm layer's extra attribute. :param lstm_bias_attr: The parameter attribute for the bias in lstm layer.
False or None means no bias.
If this parameter is set to True,
the bias is initialized to zero.
:type lstm_bias_attr: ParameterAttribute|True|None
:param lstm_layer_attr: The extra attribute of lstm layer.
:type lstm_layer_attr: ExtraLayerAttribute :type lstm_layer_attr: ExtraLayerAttribute
:return: the lstmemory group. :return: the lstmemory group.
:rtype: LayerOutput :rtype: LayerOutput
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
""" """
__all__ = [ __all__ = [
"BasePoolingType", "MaxPooling", "AvgPooling", "CudnnMaxPooling", "BasePoolingType", "MaxPooling", "AvgPooling", "MaxWithMaskPooling",
"CudnnAvgPooling", "SumPooling", "SquareRootNPooling" "CudnnMaxPooling", "CudnnAvgPooling", "SumPooling", "SquareRootNPooling"
] ]
...@@ -55,6 +55,19 @@ class MaxPooling(BasePoolingType): ...@@ -55,6 +55,19 @@ class MaxPooling(BasePoolingType):
self.output_max_index = output_max_index self.output_max_index = output_max_index
class MaxWithMaskPooling(BasePoolingType):
"""
MaxWithMask pooling.
Not only return the very large values for each dimension in sequence or time steps,
but also the location indices of found maxinum values.
"""
def __init__(self):
BasePoolingType.__init__(self, "max-pool-with-mask")
class CudnnMaxPooling(BasePoolingType): class CudnnMaxPooling(BasePoolingType):
""" """
Cudnn max pooling only support GPU. Return the maxinum value in the Cudnn max pooling only support GPU. Return the maxinum value in the
......
...@@ -28,6 +28,8 @@ layers { ...@@ -28,6 +28,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 227 output_y: 227
img_size_y: 256 img_size_y: 256
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_0__.wbias" bias_parameter_name: "___conv_0__.wbias"
......
...@@ -28,6 +28,8 @@ layers { ...@@ -28,6 +28,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 227 output_y: 227
img_size_y: 256 img_size_y: 256
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_0__.wbias" bias_parameter_name: "___conv_0__.wbias"
......
...@@ -28,6 +28,8 @@ layers { ...@@ -28,6 +28,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 48 output_y: 48
img_size_y: 48 img_size_y: 48
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_0__.wbias" bias_parameter_name: "___conv_0__.wbias"
......
...@@ -30,6 +30,8 @@ layers { ...@@ -30,6 +30,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 48 output_y: 48
img_size_y: 48 img_size_y: 48
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_0__.wbias" bias_parameter_name: "___conv_0__.wbias"
...@@ -105,6 +107,8 @@ layers { ...@@ -105,6 +107,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 24 output_y: 24
img_size_y: 24 img_size_y: 24
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_1__.wbias" bias_parameter_name: "___conv_1__.wbias"
......
...@@ -30,6 +30,8 @@ layers { ...@@ -30,6 +30,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 48 output_y: 48
img_size_y: 48 img_size_y: 48
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_0__.wbias" bias_parameter_name: "___conv_0__.wbias"
......
...@@ -36,6 +36,8 @@ layers { ...@@ -36,6 +36,8 @@ layers {
stride_y: 1 stride_y: 1
output_y: 14 output_y: 14
img_size_y: 14 img_size_y: 14
dilation: 1
dilation_y: 1
} }
} }
bias_parameter_name: "___conv_0__.wbias" bias_parameter_name: "___conv_0__.wbias"
......
...@@ -37,6 +37,8 @@ import model ...@@ -37,6 +37,8 @@ import model
import paddle.trainer.config_parser as cp import paddle.trainer.config_parser as cp
__all__ = [ __all__ = [
'default_startup_program',
'default_main_program',
'optimizer', 'optimizer',
'layer', 'layer',
'activation', 'activation',
......
from paddle.v2.framework import framework as framework from paddle.v2.fluid import framework as framework
__all__ = ['append_backward_ops'] __all__ = ['append_backward_ops']
......
...@@ -13,7 +13,7 @@ A `scoped_function` will take a `function` as input. That function will be ...@@ -13,7 +13,7 @@ A `scoped_function` will take a `function` as input. That function will be
invoked in a new local scope. invoked in a new local scope.
""" """
import paddle.v2.framework.core import paddle.v2.fluid.core
import threading import threading
__tl_scope__ = threading.local() __tl_scope__ = threading.local()
...@@ -27,13 +27,13 @@ __all__ = [ ...@@ -27,13 +27,13 @@ __all__ = [
def get_cur_scope(): def get_cur_scope():
""" """
Get current scope. Get current scope.
:rtype: paddle.v2.framework.core.Scope :rtype: paddle.v2.fluid.core.Scope
""" """
cur_scope_stack = getattr(__tl_scope__, 'cur_scope', None) cur_scope_stack = getattr(__tl_scope__, 'cur_scope', None)
if cur_scope_stack is None: if cur_scope_stack is None:
__tl_scope__.cur_scope = list() __tl_scope__.cur_scope = list()
if len(__tl_scope__.cur_scope) == 0: if len(__tl_scope__.cur_scope) == 0:
__tl_scope__.cur_scope.append(paddle.v2.framework.core.Scope()) __tl_scope__.cur_scope.append(paddle.v2.fluid.core.Scope())
return __tl_scope__.cur_scope[-1] return __tl_scope__.cur_scope[-1]
......
import numpy as np
from paddle.v2.fluid.framework import Program, g_main_program, unique_name, Variable
import paddle.v2.fluid.core as core
def _clone_var_in_block_(block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.data_type,
type=var.type,
lod_level=var.lod_level,
persistable=True)
class Evaluator(object):
"""
Evalutor Base class.
create metric states
add mini-batch evaluator caculate operator
add increment operator to accumulate the metric states
"""
def __init__(self, name, **kwargs):
"""
init the global states
"""
self._states = {}
if kwargs.has_key("main_program"):
self._main_program = kwargs.get("main_program")
else:
self._main_program = g_main_program
def _update_ops(self, *args, **kwargs):
"""
append update ops to the global states
"""
raise NotImplementedError()
def reset(self, executor, reset_program=None):
"""
Clear metric states at the begin of each pass/user specified batch
"""
if reset_program == None:
reset_program = Program()
else:
reset_program = program
block = reset_program.global_block()
for k, var in self._states.iteritems():
g_var = _clone_var_in_block_(block, var)
zeros = block.create_var(dtype="float32", persistable=True)
block.append_op(
type="fill_constant",
outputs={"Out": [zeros]},
attrs={
"shape": g_var.shape,
"value": .0,
"data_type": 5,
})
block.append_op(
type="scale", inputs={"X": zeros}, outputs={"Out": g_var})
executor.run(reset_program, fetch_list=self._states.values())
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
"""
raise NotImplementedError()
class Accuracy(Evaluator):
"""
Accuracy need two state variable Total, Correct
"""
def __init__(self, *args, **kwargs):
super(Accuracy, self).__init__("accuracy", **kwargs)
block = self._main_program.global_block()
g_total = block.create_var(
name=unique_name("Total"),
persistable=True,
dtype="int64",
shape=[1])
g_correct = block.create_var(
name=unique_name("Correct"),
persistable=True,
dtype="int64",
shape=[1])
self._states["Total"] = g_total
self._states["Correct"] = g_correct
def _update_ops(self, input, label, k=1, **kwargs):
block = self._main_program.global_block()
topk_out = block.create_var(dtype=input.data_type)
topk_indices = block.create_var(dtype="int64")
block.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out = block.create_var(dtype=kwargs.get("out_dtype", "float32"))
correct = block.create_var(dtype="int64", persistable=True)
total = block.create_var(dtype="int64", persistable=True)
block.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
block.append_op(
type="cast",
inputs={"X": [self._states["Total"]]},
outputs={"Out": [self._states["Total"]]},
attrs={
"in_data_type": 5, # float32
"out_data_type": 2, #int32
})
block.append_op(
type="cast",
inputs={"X": [self._states["Correct"]]},
outputs={"Out": [self._states["Correct"]]},
attrs={
"in_data_type": 5,
"out_data_type": 2,
})
block.append_op(
type="elementwise_add",
inputs={"X": [self._states["Total"]],
"Y": [total]},
outputs={"Out": [self._states["Total"]]})
block.append_op(
type="elementwise_add",
inputs={"X": [self._states["Correct"]],
"Y": [correct]},
outputs={"Out": [self._states["Correct"]]})
return acc_out
def eval(self, executor, eval_program=None):
if eval_program != None:
eval_program = eval_program
else:
eval_program = Program()
block = eval_program.global_block()
eval_out = block.create_var(dtype=self._states["Total"].data_type)
e_total = _clone_var_in_block_(block, self._states["Total"])
e_correct = _clone_var_in_block_(block, self._states["Correct"])
block.append_op(
type="cast",
inputs={"X": [e_total]},
outputs={"Out": [e_total]},
attrs={
"in_data_type": 2, #int32
"out_data_type": 5, #float32
})
block.append_op(
type="cast",
inputs={"X": [e_correct]},
outputs={"Out": [e_correct]},
attrs={
"in_data_type": 2,
"out_data_type": 5,
})
block.append_op(
type="elementwise_div",
inputs={"X": e_correct,
"Y": e_total},
outputs={"Out": eval_out})
out = executor.run(eval_program, fetch_list=[eval_out])
return np.array(out[0])
def accuracy(*args, **kwargs):
cls = Accuracy(*args, **kwargs)
out = cls._update_ops(*args, **kwargs)
return cls, out
import paddle.v2.framework.core as core import paddle.v2.fluid.core as core
from paddle.v2.framework.framework import Block, Program, g_main_program from paddle.v2.fluid.framework import Block, Program, g_main_program
g_scope = core.Scope() g_scope = core.Scope()
......
import paddle.v2.framework.core as core import paddle.v2.fluid.core as core
import paddle.v2.framework.proto.framework_pb2 as framework_pb2 import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
import collections import collections
import numpy as np import numpy as np
import copy import copy
__all__ = ['Block', 'Variable', 'Program', 'Operator'] __all__ = ['Block', 'Variable', 'Program', 'Operator', 'default_startup_program', 'default_main_program']
def unique_name(prefix): def unique_name(prefix):
...@@ -285,7 +285,7 @@ class Operator(object): ...@@ -285,7 +285,7 @@ class Operator(object):
self.desc.check_attrs() self.desc.check_attrs()
no_kernel_op_set = { no_kernel_op_set = {
'feed', 'fetch', 'save', 'load', 'recurrent', 'feed', 'fetch', 'save', 'load', 'recurrent',
'rnn_memory_helper_grad', 'while' 'rnn_memory_helper_grad', 'conditional_block', 'while'
} }
if type not in no_kernel_op_set: if type not in no_kernel_op_set:
self.desc.infer_var_type(self.block.desc) self.desc.infer_var_type(self.block.desc)
...@@ -562,3 +562,9 @@ class Parameter(Variable): ...@@ -562,3 +562,9 @@ class Parameter(Variable):
# program is a global instance. # program is a global instance.
g_main_program = Program() g_main_program = Program()
g_startup_program = Program() g_startup_program = Program()
def default_startup_program():
return g_startup_program
def default_main_program():
return g_main_program
import paddle.v2.framework.framework as framework import paddle.v2.fluid.framework as framework
import numpy as np import numpy as np
__all__ = [ __all__ = [
......
import os import os
import cPickle as pickle import cPickle as pickle
from paddle.v2.framework.framework import Program, Parameter, g_main_program, \ from paddle.v2.fluid.framework import Program, Parameter, g_main_program, \
Variable Variable
__all__ = [ __all__ = [
......
import copy import copy
import itertools import itertools
from paddle.v2.framework.framework import Variable, g_main_program, \ from paddle.v2.fluid.framework import Variable, g_main_program, \
g_startup_program, unique_name, Program g_startup_program, unique_name, Program
from paddle.v2.framework.initializer import ConstantInitializer, \ from paddle.v2.fluid.initializer import ConstantInitializer, \
UniformInitializer, XavierInitializer UniformInitializer, XavierInitializer
......
...@@ -3,8 +3,8 @@ import json ...@@ -3,8 +3,8 @@ import json
import logging import logging
from collections import defaultdict from collections import defaultdict
import paddle.v2.framework.core as core import paddle.v2.fluid.core as core
import paddle.v2.framework.proto.framework_pb2 as framework_pb2 import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) logger.setLevel(logging.INFO)
......
import paddle.v2.framework.layers as layers import paddle.v2.fluid.layers as layers
__all__ = ["simple_img_conv_pool", "sequence_conv_pool"] __all__ = ["simple_img_conv_pool", "sequence_conv_pool"]
......
import paddle.v2.framework.core as core import paddle.v2.fluid.core as core
import paddle.v2.framework.proto.framework_pb2 as framework_pb2 import paddle.v2.fluid.proto.framework_pb2 as framework_pb2
def get_all_op_protos(): def get_all_op_protos():
......
from collections import defaultdict from collections import defaultdict
import paddle.v2.framework.framework as framework import paddle.v2.fluid.framework as framework
from paddle.v2.framework.framework import unique_name, Program from paddle.v2.fluid.framework import unique_name, Program
from paddle.v2.framework.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.framework.initializer import ConstantInitializer from paddle.v2.fluid.initializer import ConstantInitializer
from paddle.v2.framework.regularizer import append_regularization_ops from paddle.v2.fluid.regularizer import append_regularization_ops
from paddle.v2.framework.layer_helper import LayerHelper from paddle.v2.fluid.layer_helper import LayerHelper
__all__ = [ __all__ = [
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
......
import paddle.v2.framework.framework as framework import paddle.v2.fluid.framework as framework
__all__ = [ __all__ = [
'append_regularization_ops', 'L2DecayRegularizer', 'L1DecayRegularizer' 'append_regularization_ops', 'L2DecayRegularizer', 'L1DecayRegularizer'
......
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.framework.layers as layers import paddle.v2.fluid.layers as layers
import paddle.v2.framework.core as core import paddle.v2.fluid.core as core
import paddle.v2.framework.optimizer as optimizer import paddle.v2.fluid.optimizer as optimizer
import paddle.v2.fluid.framework as framework
from paddle.v2.framework.framework import Program from paddle.v2.fluid.io import save_persistables, load_persistables
from paddle.v2.framework.io import save_persistables, load_persistables from paddle.v2.fluid.executor import Executor
from paddle.v2.framework.executor import Executor
import numpy as np import numpy as np
startup_program = Program()
main_program = Program()
x = layers.data( x = layers.data(
name='x', name='x',
shape=[13], shape=[13],
data_type='float32', data_type='float32')
main_program=main_program,
startup_program=startup_program)
y_predict = layers.fc(input=x, y_predict = layers.fc(input=x,
size=1, size=1,
act=None, act=None)
main_program=main_program,
startup_program=startup_program)
y = layers.data( y = layers.data(
name='y', name='y',
shape=[1], shape=[1],
data_type='float32', data_type='float32')
main_program=main_program,
startup_program=startup_program)
cost = layers.square_error_cost( cost = layers.square_error_cost(
input=y_predict, input=y_predict,
label=y, label=y)
main_program=main_program, avg_cost = layers.mean(x=cost)
startup_program=startup_program)
avg_cost = layers.mean(
x=cost, main_program=main_program, startup_program=startup_program)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost, startup_program) opts = sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20 BATCH_SIZE = 20
...@@ -52,12 +40,12 @@ train_reader = paddle.batch( ...@@ -52,12 +40,12 @@ train_reader = paddle.batch(
place = core.CPUPlace() place = core.CPUPlace()
exe = Executor(place) exe = Executor(place)
exe.run(startup_program, feed={}, fetch_list=[]) exe.run(framework.default_startup_program())
PASS_NUM = 100 PASS_NUM = 100
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
save_persistables(exe, "./fit_a_line.model/", main_program=main_program) save_persistables(exe, "./fit_a_line.model/")
load_persistables(exe, "./fit_a_line.model/", main_program=main_program) load_persistables(exe, "./fit_a_line.model/")
for data in train_reader(): for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32") x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("float32")
...@@ -69,7 +57,7 @@ for pass_id in range(PASS_NUM): ...@@ -69,7 +57,7 @@ for pass_id in range(PASS_NUM):
tensor_y = core.LoDTensor() tensor_y = core.LoDTensor()
tensor_y.set(y_data, place) tensor_y.set(y_data, place)
# print tensor_y.get_dims() # print tensor_y.get_dims()
outs = exe.run(main_program, outs = exe.run(framework.default_main_program(),
feed={'x': tensor_x, feed={'x': tensor_x,
'y': tensor_y}, 'y': tensor_y},
fetch_list=[avg_cost]) fetch_list=[avg_cost])
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册