未验证 提交 d883547b 编写于 作者: K kavyasrinet 提交者: GitHub

Adding the FTRL optimizer. (#5785)

* Adding the FTRL optimizer

* Fixed the python test case
上级 32b10d3b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/ftrl_op.h"
namespace paddle {
namespace operators {
class FTRLOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasInput("SquaredAccumulator"),
"Input(SquaredAccumulator) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LinearAccumulator"),
"Input(LinearAccumulator) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
"Input(LearningRate) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("SquaredAccumOut"),
"Output(SquaredAccumOut) of FTRL should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("LinearAccumOut"),
"Output(LinearAccumOut) of FTRL should not be null.");
auto param_dim = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"),
"Two input of FTRL Op's dimension must be same.");
auto lr_dim = ctx->GetInputDim("LearningRate");
PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
"Learning Rate should be a scalar.");
ctx->SetOutputDim("ParamOut", param_dim);
ctx->SetOutputDim("SquaredAccumOut", param_dim);
ctx->SetOutputDim("LinearAccumOut", param_dim);
}
};
class FTRLOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FTRLOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param",
"(Tensor, default Tensor<float>) "
"Input parameter value that has to be updated.");
AddInput("SquaredAccumulator",
"(Tensor, default Tensor<float>) "
"Accumulator that accumulates squared gradients.");
AddInput("LinearAccumulator",
"(Tensor, default Tensor<float>) "
"Accumulator that accumulates linear gradients.");
AddInput("Grad",
"(Tensor, default Tensor<float>) "
"Input gradient of the parameter.");
AddInput("LearningRate",
"(Tensor, default Tensor<float>) "
"The learning rate should be a tensor of size 1.");
AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
AddOutput("SquaredAccumOut",
"(Tensor) Output accumulated squared"
" gradients.");
AddOutput("LinearAccumOut",
"(Tensor) Output accumulated linear"
" gradients.");
AddAttr<float>("l1",
"(float, default 0.0) "
"L1 regularization strength.")
.SetDefault(0.0f);
AddAttr<float>("l2",
"(float, default 0.0) "
"L2 regularization strength.")
.SetDefault(0.0f);
AddAttr<float>("lr_power",
"(float, default -0.5f) "
"Learning Rate Power.")
.SetDefault(-0.5f);
AddComment(R"DOC(
FTRL (Follow The Regularized Leader) Operator.
Optimizer that implements the FTRL algorithm:
$$
new\_accum = squared\_accum + grad^2 \\
if (lr\_power == -0.5) {
linear\_accum += grad - (\surd(new\_accum) - \surd(squared\_accum)) /
(learning\_rate * param) \\
} else {
linear\_accum += grad -
(new\_accum^{-lr\_power} - accum^{-lr\_power}) /
(learning\_rate * param) \\
}
x = (l1 * sign(linear\_accum) - linear\_accum)
if (lr\_power == -0.5) {
y = \frac{\surd(new\_accum)}{learning\_rate} + (2 * l2) \\
pre\_shrink = \frac{x}{y} \\
param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\
} else {
y = \frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2) \\
pre\_shrink = \frac{x}{y} \\
param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\
}
squared\_accum += grad^2;
$$
The paper that proposed Follow The Regularized Leader (FTRL):
(https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker);
REGISTER_OP_CPU_KERNEL(ftrl,
ops::FTRLOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/ftrl_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(ftrl,
ops::FTRLOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class FTRLOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* param_out = ctx.Output<Tensor>("ParamOut");
auto* sq_accum_out = ctx.Output<Tensor>("SquaredAccumOut");
auto* lin_accum_out = ctx.Output<Tensor>("LinearAccumOut");
param_out->mutable_data<T>(ctx.GetPlace());
sq_accum_out->mutable_data<T>(ctx.GetPlace());
lin_accum_out->mutable_data<T>(ctx.GetPlace());
auto grad = ctx.Input<Tensor>("Grad");
auto l1 = static_cast<T>(ctx.Attr<float>("l1"));
auto l2 = static_cast<T>(ctx.Attr<float>("l2"));
auto lr_power = static_cast<T>(ctx.Attr<float>("lr_power"));
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
auto sq_accum =
EigenVector<T>::Flatten(*ctx.Input<Tensor>("SquaredAccumulator"));
auto lin_accum =
EigenVector<T>::Flatten(*ctx.Input<Tensor>("LinearAccumulator"));
auto g = EigenVector<T>::Flatten(*grad);
auto lr = EigenVector<T>::Flatten(*ctx.Input<Tensor>("LearningRate"));
auto p_out = EigenVector<T>::Flatten(*param_out);
auto s_acc_out = EigenVector<T>::Flatten(*sq_accum_out);
auto l_acc_out = EigenVector<T>::Flatten(*lin_accum_out);
auto place = ctx.GetEigenDevice<Place>();
Eigen::DSizes<int, 1> grad_dsize(grad->numel());
auto new_accum = sq_accum + g * g;
// Special case for lr_power = -0.5
if (lr_power == static_cast<T>(-0.5)) {
l_acc_out.device(place) =
lin_accum + g -
((new_accum.sqrt() - sq_accum.sqrt()) / lr.broadcast(grad_dsize)) * p;
} else {
l_acc_out.device(place) =
lin_accum + g -
((new_accum.pow(-lr_power) - sq_accum.pow(-lr_power)) /
lr.broadcast(grad_dsize)) *
p;
}
auto x = (l_acc_out.constant(l1) * l_acc_out.sign() - l_acc_out);
if (lr_power == static_cast<T>(-0.5)) {
auto y = (new_accum.sqrt() / lr.broadcast(grad_dsize)) +
l_acc_out.constant(static_cast<T>(2) * l2);
auto pre_shrink = x / y;
p_out.device(place) =
(l_acc_out.abs() > l_acc_out.constant(l1))
.select(pre_shrink, p.constant(static_cast<T>(0)));
} else {
auto y = (new_accum.pow(-lr_power) / lr.broadcast(grad_dsize)) +
l_acc_out.constant(static_cast<T>(2) * l2);
auto pre_shrink = x / y;
p_out.device(place) =
(l_acc_out.abs() > l_acc_out.constant(l1))
.select(pre_shrink, p.constant(static_cast<T>(0)));
}
s_acc_out.device(place) = sq_accum + g * g;
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestFTRLOp(OpTest):
def setUp(self):
self.op_type = "ftrl"
w = np.random.random((102, 105)).astype("float32")
g = np.random.random((102, 105)).astype("float32")
sq_accum = np.full((102, 105), 0.1).astype("float32")
linear_accum = np.full((102, 105), 0.1).astype("float32")
lr = np.array([0.01]).astype("float32")
l1 = 0.1
l2 = 0.2
lr_power = -0.5
self.inputs = {
'Param': w,
'SquaredAccumulator': sq_accum,
'LinearAccumulator': linear_accum,
'Grad': g,
'LearningRate': lr
}
self.attrs = {
'l1': l1,
'l2': l2,
'lr_power': lr_power,
'learning_rate': lr
}
new_accum = sq_accum + g * g
if lr_power == -0.5:
linear_out = linear_accum + g - (
(np.sqrt(new_accum) - np.sqrt(sq_accum)) / lr) * w
else:
linear_out = linear_accum + g - ((np.power(
new_accum, -lr_power) - np.power(sq_accum, -lr_power)) / lr) * w
x = (l1 * np.sign(linear_out) - linear_out)
if lr_power == -0.5:
y = (np.sqrt(new_accum) / lr) + (2 * l2)
pre_shrink = x / y
param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0)
else:
y = (np.power(new_accum, -lr_power) / lr) + (2 * l2)
pre_shrink = x / y
param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0)
sq_accum_out = sq_accum + g * g
self.outputs = {
'ParamOut': param_out,
'SquaredAccumOut': sq_accum_out,
'LinearAccumOut': linear_out
}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册