未验证 提交 d876952d 编写于 作者: Z zhaoying9105 提交者: GitHub

[MLU]: add argsort/argsort_grad kernel (#43574)

上级 829723f2
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
template <typename T>
class ArgsortMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<framework::LoDTensor>("X");
auto* output = ctx.Output<framework::LoDTensor>("Out");
auto* indices = ctx.Output<framework::LoDTensor>("Indices");
const auto& place = ctx.GetPlace();
const auto& sorted = true;
const bool descending = ctx.Attr<bool>("descending");
// axis < 0, cacluate the real axis
int axis = static_cast<int>(ctx.Attr<int>("axis"));
if (axis < 0) {
const auto& in_dims = input->dims();
axis += in_dims.size();
}
auto in_dims = input->dims();
size_t k = in_dims[axis];
output->mutable_data<T>(place);
indices->mutable_data<int64_t>(place);
// cnnl only support int32/int16 type of indices
framework::Tensor indices_int32(framework::TransToPhiDataType(VT::INT32));
indices_int32.Resize(indices->dims());
indices_int32.mutable_data<int32_t>(place);
MLUCnnlTensorDesc input_desc(*input);
MLUCnnlTensorDesc values_output_desc(*output);
MLUCnnlTensorDesc indices_int32_desc(indices_int32);
MLUCnnl::TopK(ctx, k, axis, descending, sorted, input_desc.get(),
GetBasePtr(input), values_output_desc.get(),
GetBasePtr(output), indices_int32_desc.get(),
GetBasePtr(&indices_int32));
// cast indices type to int64
MLUCnnlTensorDesc cast_output_desc(*indices);
cnnlCastDataType_t cast_type = GetCastDataType(VT::INT32, VT::INT64);
MLUCnnl::Cast(ctx, cast_type, indices_int32_desc.get(),
GetBasePtr(&indices_int32), cast_output_desc.get(),
GetBasePtr(indices));
}
};
template <typename T>
class ArgsortGradMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* indices = ctx.Input<Tensor>("Indices");
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
int axis = ctx.Attr<int>("axis");
dx->mutable_data<T>(ctx.GetPlace());
auto in_dims = indices->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
if (dout->numel() == 0) return;
MLUCnnlTensorDesc dout_desc(*dout);
MLUCnnlTensorDesc indices_desc(*indices);
MLUCnnlTensorDesc dx_desc(*dx);
MLUCnnl::ScatterFunctor(ctx, dx_desc.get(), GetBasePtr(dx), dout_desc.get(),
GetBasePtr(dout), indices_desc.get(),
GetBasePtr(indices), axis);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(argsort,
ops::ArgsortMLUKernel<paddle::platform::float16>,
ops::ArgsortMLUKernel<float>,
ops::ArgsortMLUKernel<int8_t>,
ops::ArgsortMLUKernel<uint8_t>,
ops::ArgsortMLUKernel<int16_t>,
ops::ArgsortMLUKernel<int>);
REGISTER_OP_MLU_KERNEL(argsort_grad,
ops::ArgsortGradMLUKernel<paddle::platform::float16>,
ops::ArgsortGradMLUKernel<float>,
ops::ArgsortGradMLUKernel<int8_t>,
ops::ArgsortGradMLUKernel<uint8_t>,
ops::ArgsortGradMLUKernel<int16_t>,
ops::ArgsortGradMLUKernel<int>);
......@@ -91,9 +91,9 @@ class GatherGradOpMLUKernel : public framework::OpKernel<T> {
ToCnnlDataType(index->dtype()));
MLUCnnlTensorDesc dout_desc(*dout);
const cnnlScatterRefMode_t mode = CNNL_SCATTERREF_UPDATE;
MLUCnnl::ScatterFunctor(ctx, dx_desc.get(), GetBasePtr(dx), dout_desc.get(),
GetBasePtr(dout), index_desc.get(),
GetBasePtr(index), mode);
MLUCnnl::ScatterRefFunctor(ctx, dx_desc.get(), GetBasePtr(dx),
dout_desc.get(), GetBasePtr(dout),
index_desc.get(), GetBasePtr(index), mode);
}
};
......
......@@ -1134,7 +1134,7 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
indices_desc, indices, output_desc, output));
}
/* static */ void MLUCnnl::ScatterFunctor(
/* static */ void MLUCnnl::ScatterRefFunctor(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t params_desc,
const void* params, const cnnlTensorDescriptor_t updates_desc,
const void* updates, const cnnlTensorDescriptor_t indices_desc,
......@@ -1146,6 +1146,19 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
updates, 0, mode));
}
/* static */ void MLUCnnl::ScatterFunctor(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t params_desc,
void* params, const cnnlTensorDescriptor_t updates_desc,
const void* updates, const cnnlTensorDescriptor_t indices_desc,
const void* indices, const int dim, const cnnlScatterMode_t mode) {
cnnlHandle_t handle = GetHandleFromCTX(ctx);
PADDLE_ENFORCE_MLU_SUCCESS(cnnlScatter(
handle, dim, params_desc, params, indices_desc, indices, updates_desc,
updates, params_desc, params, /* output_desc, output, same with params*/
mode));
}
/* static */ void MLUCnnl::StridedSliceGrad(
const ExecutionContext& ctx, const int begin[], const int end[],
const int strides[], const cnnlTensorDescriptor_t input_desc,
......
......@@ -626,12 +626,21 @@ class MLUCnnl {
const cnnlTensorDescriptor_t indices_desc, const void* indices,
const cnnlTensorDescriptor_t output_desc, void* output);
static void ScatterFunctor(
static void ScatterRefFunctor(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t params_desc,
const void* params, const cnnlTensorDescriptor_t updates_desc,
const void* updates, const cnnlTensorDescriptor_t indices_desc,
const void* indices, const cnnlScatterRefMode_t mode);
static void ScatterFunctor(const ExecutionContext& ctx,
const cnnlTensorDescriptor_t params_desc,
const void* params,
const cnnlTensorDescriptor_t updates_desc,
const void* updates,
const cnnlTensorDescriptor_t indices_desc,
const void* indices, const int dim,
const cnnlScatterMode_t mode = CNNL_SCATTER);
static void Range(const ExecutionContext& ctx, const void* start,
const void* end, const void* step,
const cnnlDataType_t output_dtype, void* output);
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
paddle.enable_static()
SEED = 2022
def gen_test_class(dtype, axis, descending):
class TestArgsortOp(OpTest):
def setUp(self):
np.random.seed(SEED)
self.set_mlu()
self.op_type = "argsort"
self.place = paddle.MLUPlace(0)
self.init_inputshape()
if 'int' in dtype:
self.x = np.random.choice(255, self.size, replace=False)
self.x = self.x.reshape(self.input_shape).astype(dtype)
else:
self.x = np.random.random(self.input_shape).astype(dtype)
self.inputs = {"X": self.x}
self.attrs = {"axis": axis, "descending": descending}
self.get_output()
self.outputs = {"Out": self.sorted_x, "Indices": self.indices}
def get_output(self):
if descending:
self.indices = np.flip(
np.argsort(self.x, kind='heapsort', axis=axis), axis)
self.sorted_x = np.flip(
np.sort(self.x, kind='heapsort', axis=axis), axis)
else:
self.indices = np.argsort(self.x, kind='heapsort', axis=axis)
self.sorted_x = np.sort(self.x, kind='heapsort', axis=axis)
def test_check_grad(self):
if dtype in ['float16', 'int8', 'uint8', 'int32']:
self.__class__.no_need_check_grad = True
else:
self.check_grad_with_place(self.place, ["X"], "Out")
def set_mlu(self):
self.__class__.use_mlu = True
def init_inputshape(self):
self.input_shape = (5, 2, 2, 3, 3)
self.size = np.prod(self.input_shape)
def test_check_output(self):
self.check_output_with_place(self.place)
def init_direction(self):
self.descending = False
cls_name = "{}_{}_{}_TestArgsortOp".format(dtype, axis, descending)
TestArgsortOp.__name__ = cls_name
globals()[cls_name] = TestArgsortOp
for dtype in ['float32', 'float16', 'int8', 'uint8', 'int32']:
for axis in [1, 2, 3, -1]:
for descending in [False]:
gen_test_class(dtype, axis, descending)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册