Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
d12c3636
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d12c3636
编写于
2月 14, 2022
作者:
T
TTerror
提交者:
GitHub
2月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix gather_nd, *test=kunlun (#39283)
上级
9ba3f429
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
119 addition
and
226 deletion
+119
-226
paddle/fluid/operators/gather_nd_op_xpu.cc
paddle/fluid/operators/gather_nd_op_xpu.cc
+4
-0
python/paddle/fluid/tests/unittests/xpu/test_gather_nd_op_xpu.py
...paddle/fluid/tests/unittests/xpu/test_gather_nd_op_xpu.py
+115
-226
未找到文件。
paddle/fluid/operators/gather_nd_op_xpu.cc
浏览文件 @
d12c3636
...
...
@@ -47,8 +47,12 @@ class GatherNdXPUKernel : public framework::OpKernel<T> {
auto
x_shape
=
paddle
::
framework
::
vectorize
<
int
>
(
x
->
dims
());
auto
index_shape
=
paddle
::
framework
::
vectorize
<
int
>
(
index
->
dims
());
if
(
index_shape
.
size
()
==
1
)
{
index_shape
.
insert
(
index_shape
.
begin
(),
1
);
}
xpu
::
VectorParam
<
int
>
x_vec
=
{
x_shape
.
data
(),
static_cast
<
int
>
(
x_shape
.
size
()),
nullptr
};
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
int
ret
=
XPU_SUCCESS
;
...
...
python/paddle/fluid/tests/unittests/xpu/test_gather_nd_op_xpu.py
浏览文件 @
d12c3636
...
...
@@ -18,251 +18,140 @@ import unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
import
paddle.fluid
as
fluid
import
paddle
def
gather_nd_grad
(
x
,
index
):
dout_shape
=
index
.
shape
[:
-
1
]
+
x
.
shape
[
index
.
shape
[
-
1
]:]
numel
=
1
for
i
in
dout_shape
:
numel
=
numel
*
i
dout
=
np
.
full
(
dout_shape
,
1.
/
numel
)
dx
=
np
.
full_like
(
x
,
0
)
index
=
tuple
(
index
.
reshape
(
-
1
,
index
.
shape
[
-
1
]).
T
)
np
.
add
.
at
(
dx
,
index
,
dout
)
return
dx
def
test_class1
(
op_type
,
typename
):
class
TestGatherNdOpWithEmptyIndex
(
XPUOpTest
):
#Index has empty element, which means copy entire tensor
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
typename
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([[],
[]]).
astype
(
"int32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
vstack
((
xnp
[
np
.
newaxis
,
:],
xnp
[
np
.
newaxis
,
:]))
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_1"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithEmptyIndex
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithEmptyIndex
def
test_class2
(
op_type
,
typename
):
class
TestGatherNdOpWithIndex1
(
OpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
typename
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
np
.
array
([
1
]).
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
"X"
][
self
.
inputs
[
"Index"
]]}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_2"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithIndex1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithIndex1
def
test_class3
(
op_type
,
typename
):
class
TestGatherNdOpWithLowIndex
(
OpTest
):
#Index has low rank, X has high rank
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
self
.
x_grad
=
gather_nd_grad
(
xnp
,
index
)
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
import
paddle
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
cls_name
=
"{0}_{1}_3"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithLowIndex
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithLowIndex
paddle
.
enable_static
()
def
test_class4
(
op_type
,
typename
):
class
TestGatherNdOpIndex1
(
OpTest
):
#Index has low rank, X has high rank
class
XPUTestGatherNd
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'gather_nd'
class
XPUTestGatherNdBase
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_4"
.
format
(
op_type
,
typename
)
TestGatherNdOpIndex1
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpIndex1
def
test_class5
(
op_type
,
typename
):
class
TestGatherNdOpWithSameIndexAsX
(
OpTest
):
#Index has same rank as X's rank
def
setUp
(
self
):
self
.
set_xpu
()
self
.
dtype
=
self
.
in_type
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
typename
)
index
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
#[25, 22]
self
.
init_data
()
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
self
.
inputs
=
{
'X'
:
self
.
xnp
,
'Index'
:
self
.
inp
}
self
.
outputs
=
{
'Out'
:
self
.
output
,
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_5"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithSameIndexAsX
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithSameIndexAsX
def
test_class6
(
op_type
,
typename
):
class
TestGatherNdOpWithHighRankSame
(
OpTest
):
#Both Index and X have high rank, and Rank(Index) = Rank(X)
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[],
[]]).
astype
(
"int32"
)
self
.
output
=
np
.
vstack
(
(
self
.
xnp
[
np
.
newaxis
,
:],
self
.
xnp
[
np
.
newaxis
,
:]))
class
XPUTestGatherNdOpWithEmptyIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[],
[]]).
astype
(
"int32"
)
self
.
output
=
np
.
vstack
(
(
self
.
xnp
[
np
.
newaxis
,
:],
self
.
xnp
[
np
.
newaxis
,
:]))
class
XPUTestGatherNdOpWithEmptyIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[],
[]]).
astype
(
"int64"
)
self
.
output
=
np
.
vstack
(
(
self
.
xnp
[
np
.
newaxis
,
:],
self
.
xnp
[
np
.
newaxis
,
:]))
class
XPUTestGatherNdOpWithIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
self
.
inp
]
class
XPUTestGatherNdOpWithIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
random
((
5
,
20
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
self
.
inp
]
class
XPUTestGatherNdOpWithLowIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[
1
],
[
2
]]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithLowIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithHighRankSame1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
5
,
2
,
3
,
1
,
10
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
typename
)
index
=
np
.
vstack
([
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)]}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_6"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithHighRankSame
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithHighRankSame
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
.
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
def
test_class7
(
op_type
,
typename
):
class
TestGatherNdOpWithHighRankDiff
(
OpTest
):
#Both Index and X have high rank, Rank(Index) < Rank(X)
class
XPUTestGatherNdOpWithHighRankSame2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
5
,
2
,
3
,
1
,
10
)
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
2
)
for
s
in
shape
]).
T
.
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"gather_nd"
class
XPUTestGatherNdOpWithHighRankDiff1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
2
,
3
,
4
,
1
,
10
)
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
typenam
e
)
index
=
np
.
vstack
(
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_typ
e
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
index_re
=
index
.
reshape
([
20
,
5
,
2
,
5
])
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
index_re
.
astype
(
"int32"
)}
self
.
outputs
=
{
'Out'
:
xnp
[
tuple
(
index
.
T
)].
reshape
([
20
,
5
,
2
])}
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
.
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
cls_name
=
"{0}_{1}_7"
.
format
(
op_type
,
typename
)
TestGatherNdOpWithHighRankDiff
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestGatherNdOpWithHighRankDiff
class
TestGatherNdAPI
(
unittest
.
TestCase
):
def
test_imperative
(
self
):
paddle
.
disable_static
()
input_1
=
np
.
array
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]])
index_1
=
np
.
array
([[
1
]])
input
=
fluid
.
dygraph
.
to_variable
(
input_1
)
index
=
fluid
.
dygraph
.
to_variable
(
index_1
)
output
=
paddle
.
fluid
.
layers
.
gather
(
input
,
index
)
output_np
=
output
.
numpy
()
expected_output
=
np
.
array
([
3
,
4
])
self
.
assertTrue
(
np
.
allclose
(
output_np
,
expected_output
))
paddle
.
enable_static
()
for
_typename
in
{
'float32'
,
'int'
,
'int64'
}:
test_class1
(
'gather_nd'
,
_typename
)
test_class2
(
'gather_nd'
,
_typename
)
test_class3
(
'gather_nd'
,
_typename
)
test_class4
(
'gather_nd'
,
_typename
)
test_class5
(
'gather_nd'
,
_typename
)
test_class6
(
'gather_nd'
,
_typename
)
test_class7
(
'gather_nd'
,
_typename
)
class
XPUTestGatherNdOpWithHighRankDiff2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
shape
=
(
2
,
3
,
4
,
1
,
10
)
self
.
xnp
=
np
.
random
.
rand
(
*
shape
).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
vstack
(
[
np
.
random
.
randint
(
0
,
s
,
size
=
200
)
for
s
in
shape
]).
T
.
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithSameIndexAsX1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpWithSameIndexAsX2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([[
1
,
1
],
[
2
,
1
]]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpIndex1
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
,
2
]).
astype
(
"int32"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
class
XPUTestGatherNdOpIndex2
(
XPUTestGatherNdBase
):
def
init_data
(
self
):
self
.
xnp
=
np
.
random
.
uniform
(
0
,
100
,
(
10
,
10
)).
astype
(
self
.
in_type
)
self
.
inp
=
np
.
array
([
1
,
2
]).
astype
(
"int64"
)
self
.
output
=
self
.
xnp
[
tuple
(
self
.
inp
.
T
)]
support_types
=
get_xpu_op_support_types
(
'gather_nd'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestGatherNd
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录