未验证 提交 d0219002 编写于 作者: J Jiabin Yang 提交者: GitHub

Cherry pick install check for multi gpu (#18245)

* test=develop, add add_multi_gpu_install_check (#18157)

* test=develop, add add_multi_gpu_install_check

* test=develop, refine warning doc

* test=develop, refine warning doc

* test=develop, refine warning doc

* test=develop, support multi cpu

* test=release/1.5, cherry-picked from develop
上级 0648376c
......@@ -12,15 +12,50 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .framework import Program, program_guard, unique_name, default_startup_program
import os
from . import core
def process_env():
env = os.environ
device_list = []
if env.get('CUDA_VISIBLE_DEVICES') is not None:
cuda_devices = env['CUDA_VISIBLE_DEVICES']
if cuda_devices == "" or len(cuda_devices) == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
device_list = [0, 1]
elif len(cuda_devices) == 1:
device_list.append(0)
elif len(cuda_devices) > 1:
for i in range(len(cuda_devices.split(","))):
device_list.append(i)
return device_list
else:
if core.get_cuda_device_count() > 1:
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
return [0, 1]
else:
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
return [0]
device_list = []
if core.is_compiled_with_cuda():
device_list = process_env()
else:
device_list = [0, 1] # for CPU 0,1
from .framework import Program, program_guard, unique_name
from .param_attr import ParamAttr
from .initializer import Constant
from . import layers
from . import backward
from .dygraph import Layer, nn
from . import executor
from . import optimizer
from . import core
from . import compiler
import logging
import numpy as np
__all__ = ['run_check']
......@@ -45,25 +80,94 @@ def run_check():
This func should not be called only if you need to verify installation
'''
print("Running Verify Fluid Program ... ")
prog = Program()
startup_prog = Program()
scope = core.Scope()
with executor.scope_guard(scope):
with program_guard(prog, startup_prog):
with unique_name.guard():
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
inp = layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
simple_layer = SimpleLayer("simple_layer")
out = simple_layer(inp)
param_grads = backward.append_backward(
out, parameter_list=[simple_layer._fc1._w.name])[0]
exe = executor.Executor(core.CPUPlace(
) if not core.is_compiled_with_cuda() else core.CUDAPlace(0))
exe.run(default_startup_program())
exe.run(feed={inp.name: np_inp},
fetch_list=[out.name, param_grads[1].name])
print(
"Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
)
use_cuda = False if not core.is_compiled_with_cuda() else True
place = core.CPUPlace() if not core.is_compiled_with_cuda(
) else core.CUDAPlace(0)
np_inp_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
inp = []
for i in range(len(device_list)):
inp.append(np_inp_single)
np_inp_muti = np.array(inp)
np_inp_muti = np_inp_muti.reshape(len(device_list), 2, 2)
def test_parallerl_exe():
train_prog = Program()
startup_prog = Program()
scope = core.Scope()
if not use_cuda:
os.environ['CPU_NUM'] = "2"
with executor.scope_guard(scope):
with program_guard(train_prog, startup_prog):
with unique_name.guard():
places = []
build_strategy = compiler.BuildStrategy()
build_strategy.enable_inplace = True
build_strategy.memory_optimize = True
inp = layers.data(name="inp", shape=[2, 2])
simple_layer = SimpleLayer("simple_layer")
out = simple_layer(inp)
exe = executor.Executor(place)
if use_cuda:
for i in device_list:
places.append(core.CUDAPlace(i))
else:
places = [core.CPUPlace(), core.CPUPlace()]
loss = layers.mean(out)
loss.persistable = True
optimizer.SGD(learning_rate=0.01).minimize(loss)
startup_prog.random_seed = 1
compiled_prog = compiler.CompiledProgram(
train_prog).with_data_parallel(
build_strategy=build_strategy,
loss_name=loss.name,
places=places)
exe.run(startup_prog)
exe.run(compiled_prog,
feed={inp.name: np_inp_muti},
fetch_list=[loss.name])
def test_simple_exe():
train_prog = Program()
startup_prog = Program()
scope = core.Scope()
if not use_cuda:
os.environ['CPU_NUM'] = "1"
with executor.scope_guard(scope):
with program_guard(train_prog, startup_prog):
with unique_name.guard():
inp0 = layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
simple_layer0 = SimpleLayer("simple_layer")
out0 = simple_layer0(inp0)
param_grads = backward.append_backward(
out0, parameter_list=[simple_layer0._fc1._w.name])[0]
exe0 = executor.Executor(core.CPUPlace()
if not core.is_compiled_with_cuda()
else core.CUDAPlace(0))
exe0.run(startup_prog)
exe0.run(feed={inp0.name: np_inp_single},
fetch_list=[out0.name, param_grads[1].name])
test_simple_exe()
print("Your Paddle Fluid works well on SINGLE GPU or CPU.")
try:
test_parallerl_exe()
print("Your Paddle Fluid works well on MUTIPLE GPU or CPU.")
print(
"Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now"
)
except Exception as e:
logging.warning(
"Your Paddle Fluid has some problem with multiple GPU. This may be caused by:"
"\n 1. There is only 1 GPU visible on your Device;"
"\n 2. No.1 or No.2 GPU or both of them are occupied now"
"\n 3. Wrong installation of NVIDIA-NCCL2, please follow instruction on https://github.com/NVIDIA/nccl-tests "
"\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html"
)
print("\n Original Error is: {}".format(e))
print(
"Your Paddle Fluid is installed successfully ONLY for SINGLE GPU or CPU! "
"\n Let's start deep Learning with Paddle Fluid now")
......@@ -116,6 +116,7 @@ list(REMOVE_ITEM TEST_OPS test_imperative_mnist)
list(REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer)
list(REMOVE_ITEM TEST_OPS test_layers)
list(REMOVE_ITEM TEST_OPS test_imperative_ocr_attention_model)
list(REMOVE_ITEM TEST_OPS test_install_check)
# Some ops need to check results when gc is enabled
# Currently, only ops that register NoNeedBufferVarsInference need to do this test
......@@ -172,6 +173,9 @@ py_test_modules(test_imperative_mnist_sorted_gradient MODULES test_imperative_mn
py_test_modules(test_imperative_se_resnext MODULES test_imperative_se_resnext ENVS
FLAGS_cudnn_deterministic=1 SERIAL)
set_tests_properties(test_imperative_se_resnext PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE")
py_test_modules(test_install_check MODULES test_install_check ENVS
FLAGS_cudnn_deterministic=1 SERIAL)
set_tests_properties(test_install_check PROPERTIES LABELS "RUN_TYPE=DIST")
if(WITH_DISTRIBUTE)
py_test_modules(test_dist_train MODULES test_dist_train)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册