Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
cfc965d5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cfc965d5
编写于
11月 10, 2016
作者:
Q
qingqing01
提交者:
GitHub
11月 10, 2016
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #269 from wangyang59/deconv
上级
8d4c453b
1c58e27f
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
1203 addition
and
338 deletion
+1203
-338
.gitignore
.gitignore
+2
-0
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+57
-17
paddle/gserver/layers/ConvBaseLayer.h
paddle/gserver/layers/ConvBaseLayer.h
+3
-0
paddle/gserver/layers/ExpandConvBaseLayer.cpp
paddle/gserver/layers/ExpandConvBaseLayer.cpp
+263
-0
paddle/gserver/layers/ExpandConvBaseLayer.h
paddle/gserver/layers/ExpandConvBaseLayer.h
+85
-0
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+11
-248
paddle/gserver/layers/ExpandConvLayer.h
paddle/gserver/layers/ExpandConvLayer.h
+4
-51
paddle/gserver/layers/ExpandConvTransLayer.cpp
paddle/gserver/layers/ExpandConvTransLayer.cpp
+92
-0
paddle/gserver/layers/ExpandConvTransLayer.h
paddle/gserver/layers/ExpandConvTransLayer.h
+44
-0
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+8
-0
paddle/gserver/tests/test_ConvTrans.cpp
paddle/gserver/tests/test_ConvTrans.cpp
+246
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+42
-0
paddle/math/MathUtils.cpp
paddle/math/MathUtils.cpp
+13
-0
paddle/math/MathUtils.h
paddle/math/MathUtils.h
+7
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+109
-17
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+18
-4
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
...trainer_config_helpers/tests/configs/generate_protostr.sh
+1
-1
python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py
.../trainer_config_helpers/tests/configs/img_trans_layers.py
+22
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
..._helpers/tests/configs/protostr/img_trans_layers.protostr
+176
-0
未找到文件。
.gitignore
浏览文件 @
cfc965d5
...
@@ -5,4 +5,6 @@ build/
...
@@ -5,4 +5,6 @@ build/
.vscode
.vscode
.idea
.idea
.project
.project
.cproject
.pydevproject
.pydevproject
Makefile
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
cfc965d5
...
@@ -14,12 +14,15 @@ limitations under the License. */
...
@@ -14,12 +14,15 @@ limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Logging.h"
#include "ConvBaseLayer.h"
#include "ConvBaseLayer.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
namespace
paddle
{
bool
ConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
bool
ConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
Layer
::
init
(
layerMap
,
parameterMap
);
isDeconv_
=
(
config_
.
type
()
==
"exconv"
||
config_
.
type
()
==
"cudnn_conv"
)
?
false
:
true
;
/* Initialize the convolutional layer parameter */
/* Initialize the convolutional layer parameter */
numFilters_
=
config_
.
num_filters
();
numFilters_
=
config_
.
num_filters
();
...
@@ -42,8 +45,20 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
...
@@ -42,8 +45,20 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
outputW_
.
push_back
(
conf
.
output_x
());
outputW_
.
push_back
(
conf
.
output_x
());
}
}
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
size_t
height
,
width
;
height
=
filterPixels_
[
i
]
*
filterChannels_
[
i
];
width
=
(
!
isDeconv_
)
?
numFilters_
:
channels_
[
i
];
// create a new weight
CHECK_EQ
(
parameters_
[
i
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
i
]);
weights_
.
emplace_back
(
w
);
}
/* initialize the biases_ */
/* initialize the biases_ */
if
(
biasParameter_
.
get
()
!=
NULL
)
{
if
(
biasParameter_
.
get
())
{
if
(
sharedBiases_
)
{
if
(
sharedBiases_
)
{
CHECK_EQ
((
size_t
)
numFilters_
,
biasParameter_
->
getSize
());
CHECK_EQ
((
size_t
)
numFilters_
,
biasParameter_
->
getSize
());
biases_
=
biases_
=
...
@@ -70,23 +85,48 @@ size_t ConvBaseLayer::calOutputSize() {
...
@@ -70,23 +85,48 @@ size_t ConvBaseLayer::calOutputSize() {
clearAndReserve
(
&
outputH_
);
clearAndReserve
(
&
outputH_
);
clearAndReserve
(
&
outputW_
);
clearAndReserve
(
&
outputW_
);
size_t
layerSize
=
0
;
size_t
layerSize
=
0
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
imgSizeH_
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameHeight
());
auto
setLayerSize
=
[
&
](
IntV
&
inH
,
IntV
&
inW
,
IntV
&
outH
,
IntV
&
outW
)
{
imgSizeW_
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameWidth
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
if
(
imgSizeH_
[
i
]
==
0
)
inH
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameHeight
());
imgSizeH_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
inW
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameWidth
());
if
(
imgSizeW_
[
i
]
==
0
)
if
(
isDeconv_
)
{
imgSizeW_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
inH
[
i
]
==
0
)
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
inH
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
output_x
();
strideY_
[
i
],
caffeMode_
));
if
(
inW
[
i
]
==
0
)
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
inW
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
output_x
();
stride_
[
i
],
caffeMode_
));
outH
.
push_back
(
CHECK_EQ
(
outputH_
[
i
],
outputH_
[
0
]);
imageSize
(
inH
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
CHECK_EQ
(
outputW_
[
i
],
outputW_
[
0
]);
caffeMode_
));
outW
.
push_back
(
imageSize
(
inW
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
}
else
{
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
outH
.
push_back
(
outputSize
(
inH
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outW
.
push_back
(
outputSize
(
inW
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
}
CHECK_EQ
(
outH
[
i
],
outH
[
0
]);
CHECK_EQ
(
outW
[
i
],
outW
[
0
]);
}
getOutput
().
setFrameHeight
(
outH
[
0
]);
getOutput
().
setFrameWidth
(
outW
[
0
]);
layerSize
=
outH
[
0
]
*
outW
[
0
]
*
size_t
(
numFilters_
);
};
if
(
isDeconv_
)
{
setLayerSize
(
outputH_
,
outputW_
,
imgSizeH_
,
imgSizeW_
);
}
else
{
setLayerSize
(
imgSizeH_
,
imgSizeW_
,
outputH_
,
outputW_
);
}
}
getOutput
().
setFrameHeight
(
outputH_
[
0
]);
getOutput
().
setFrameWidth
(
outputW_
[
0
]);
layerSize
=
outputH_
[
0
]
*
outputW_
[
0
]
*
size_t
(
numFilters_
);
return
layerSize
;
return
layerSize
;
}
}
...
...
paddle/gserver/layers/ConvBaseLayer.h
浏览文件 @
cfc965d5
...
@@ -28,6 +28,9 @@ class ConvBaseLayer : public Layer {
...
@@ -28,6 +28,9 @@ class ConvBaseLayer : public Layer {
protected:
protected:
typedef
std
::
vector
<
int
>
IntV
;
typedef
std
::
vector
<
int
>
IntV
;
/// True if it's deconv layer, false if it's convolution layer
bool
isDeconv_
;
/// The number of filters.
/// The number of filters.
int
numFilters_
;
int
numFilters_
;
/// The x dimension of the padding.
/// The x dimension of the padding.
...
...
paddle/gserver/layers/ExpandConvBaseLayer.cpp
0 → 100644
浏览文件 @
cfc965d5
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h"
namespace
paddle
{
bool
ExpandConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
/* The class fields channels_ and numFilters_ are the same as in the config
* i.e., channels_ is the for the input and numFilters_ is for the output
*
* But in order for the variables in convTrans having the same semantic
* meaning as in conv, we need to swap channels_ and numFilters here for
* convTrans, and in other functions too.
* */
int
channel
;
int
numFilters
;
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
numFilters
=
isDeconv_
?
conf
.
channels
()
:
numFilters_
;
subM_
.
push_back
(
numFilters
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
channel
=
isDeconv_
?
numFilters_
:
conf
.
channels
();
subK_
.
push_back
(
channel
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
getOutputSize
();
return
true
;
}
size_t
ExpandConvBaseLayer
::
getOutputSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
size_t
layerSize
=
ConvBaseLayer
::
calOutputSize
();
subN_
.
clear
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
subN_
.
push_back
(
outputH_
[
i
]
*
outputW_
[
i
]);
}
return
layerSize
;
}
void
ExpandConvBaseLayer
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
void
ExpandConvBaseLayer
::
addSharedBias
()
{
size_t
mapW
=
getOutputSize
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
out
->
clear
();
bias
->
clear
();
}
void
ExpandConvBaseLayer
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
outValue
->
addBias
(
*
bias
,
1.0
f
);
}
void
ExpandConvBaseLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
int
channel
=
isDeconv_
?
numFilters_
:
channels_
[
inIdx
];
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channel
,
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channel
,
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ExpandConvBaseLayer
::
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
expandOneFrame
(
image
,
startIdx
,
inIdx
);
int
numFilters
=
isDeconv_
?
channels_
[
inIdx
]
:
numFilters_
;
real
*
outData
=
out
->
getData
()
+
startIdx
*
subN
*
numFilters
;
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outData
+=
subM
*
subN
;
}
}
void
ExpandConvBaseLayer
::
bpropActs
(
MatrixPtr
out
,
MatrixPtr
image
,
int
inpIdx
)
{
int
channel
=
isDeconv_
?
numFilters_
:
channels_
[
inpIdx
];
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
image
->
getHeight
();
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
localGradData
=
out
->
getData
();
real
*
tgtGradData
=
image
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localGradData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localGradData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneGradTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
tgtGradData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel
,
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneGradTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channel
,
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneGradTmp
->
clear
();
// move the data-pointer
tgtGradData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel
;
}
}
void
ExpandConvBaseLayer
::
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
image
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
gradData
=
out
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
image
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
gradData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
gradData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
void
ExpandConvBaseLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
getOutputSize
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
transOutValue_
,
1.0
f
);
}
void
ExpandConvBaseLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
}
// namespace paddle
paddle/gserver/layers/ExpandConvBaseLayer.h
0 → 100644
浏览文件 @
cfc965d5
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include <vector>
namespace
paddle
{
/**
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class
ExpandConvBaseLayer
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc
* Expand one sample at a time. shape:
* (numChannels * filterPixels_, outputSizeH * outputSizeW)
* */
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
public:
explicit
ExpandConvBaseLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
ExpandConvBaseLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
size_t
getOutputSize
();
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one input sample and perform matrix multiplication.
*/
void
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
);
};
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
cfc965d5
...
@@ -24,150 +24,29 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
...
@@ -24,150 +24,29 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
subM_
.
push_back
(
numFilters_
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
subK_
.
push_back
(
conf
.
channels
()
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
/* initialize the weightList */
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
size_t
height
,
width
;
height
=
filterPixels_
[
i
]
*
filterChannels_
[
i
];
width
=
numFilters_
;
// create a new weight
CHECK_EQ
(
parameters_
[
i
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
i
]);
weights_
.
emplace_back
(
w
);
}
return
true
;
return
true
;
}
}
size_t
ExpandConvLayer
::
getOutputSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
size_t
layerSize
=
ConvBaseLayer
::
calOutputSize
();
subN_
.
clear
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
subN_
.
push_back
(
outputH_
[
i
]
*
outputW_
[
i
]);
}
return
layerSize
;
}
void
ExpandConvLayer
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
void
ExpandConvLayer
::
resetConvOutput
(
size_t
batchSize
,
int
inIdx
)
{
Matrix
::
resizeOrCreate
(
transOutValue_
,
batchSize
*
numFilters_
,
subN_
[
inIdx
],
false
,
useGpu_
);
}
void
ExpandConvLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channels_
[
inIdx
],
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channels_
[
inIdx
],
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ExpandConvLayer
::
expandFwdOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
expandOneFrame
(
image
,
startIdx
,
inIdx
);
real
*
outData
=
getOutputValue
()
->
getData
()
+
startIdx
*
subN
*
numFilters_
;
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outData
+=
subM
*
subN
;
}
}
void
ExpandConvLayer
::
addSharedBias
()
{
size_t
mapW
=
getOutputValue
()
->
getWidth
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
out
->
clear
();
bias
->
clear
();
}
void
ExpandConvLayer
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
outValue
->
addBias
(
*
bias
,
1.0
f
);
}
void
ExpandConvLayer
::
forward
(
PassType
passType
)
{
void
ExpandConvLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
Layer
::
forward
(
passType
);
/* malloc memory for the output_ if necessary */
/* malloc memory for the output_ if necessary */
/* note: one sample correspond to one colum, and the
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
* transOutValue correspond sample to one row */
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getWidth
();
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
resetOutput
(
batchSize
,
getOutputSize
());
resetOutput
(
batchSize
,
getOutputSize
());
MatrixPtr
image
=
nullptr
;
MatrixPtr
image
=
nullptr
;
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
MatrixPtr
outV
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
LayerPtr
prevLayer
=
getPrev
(
i
);
LayerPtr
prevLayer
=
getPrev
(
i
);
image
=
prevLayer
->
getOutputValue
();
image
=
prevLayer
->
getOutputValue
();
for
(
size_t
off
=
0
;
off
<
image
->
getHeight
();
off
++
)
{
for
(
size_t
off
=
0
;
off
<
image
->
getHeight
();
off
++
)
{
REGISTER_TIMER_INFO
(
"expandFwdOnce"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"expandFwdOnce"
,
getName
().
c_str
());
expandFwdOnce
(
image
,
i
,
off
);
expandFwdOnce
(
image
,
outV
,
i
,
off
);
}
}
}
}
/* add the bias-vector */
/* add the bias-vector */
if
(
biases_
.
get
()
!=
NULL
)
{
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
if
(
sharedBiases_
)
{
addSharedBias
();
addSharedBias
();
}
else
{
}
else
{
...
@@ -179,29 +58,6 @@ void ExpandConvLayer::forward(PassType passType) {
...
@@ -179,29 +58,6 @@ void ExpandConvLayer::forward(PassType passType) {
forwardActivation
();
forwardActivation
();
}
}
void
ExpandConvLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
v
->
getWidth
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
vTmp
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
vTmp
,
1.0
f
);
}
void
ExpandConvLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
void
ExpandConvLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
void
ExpandConvLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
backwardActivation
();
...
@@ -213,111 +69,18 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
...
@@ -213,111 +69,18 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
/* First, calculate the input layers error */
bpropActs
(
outGrad
,
i
);
if
(
getPrev
(
i
)
->
getOutputGrad
())
{
bpropActs
(
outGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
);
}
if
(
weights_
[
i
]
->
getWGrad
())
{
if
(
weights_
[
i
]
->
getWGrad
())
{
/* Then, calculate the W-gradient for the current layer */
/* Then, calculate the W-gradient for the current layer */
bpropWeights
(
outGrad
,
i
);
bpropWeights
(
getPrev
(
i
)
->
getOutputValue
(),
outGrad
,
i
);
/* Increasing the number of gradient */
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
}
}
void
ExpandConvLayer
::
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
MatrixPtr
inputV
=
getPrev
(
inpIdx
)
->
getOutputValue
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
inputV
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
resetConvOutput
(
batchSize
,
inpIdx
);
real
*
gradData
=
v
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
inputV
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
gradData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
gradData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
void
ExpandConvLayer
::
bpropActs
(
MatrixPtr
v
,
int
inpIdx
)
{
LayerPtr
prevLayer
=
getPrev
(
inpIdx
);
if
(
NULL
==
prevLayer
->
getOutputGrad
())
{
return
;
}
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
v
->
getHeight
();
MatrixPtr
tgtGrad
=
prevLayer
->
getOutputGrad
();
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
resetConvOutput
(
batchSize
,
inpIdx
);
real
*
localGradData
=
v
->
getData
();
real
*
tgtGradData
=
tgtGrad
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localGradData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localGradData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneGradTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
tgtGradData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channels_
[
inpIdx
],
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneGradTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channels_
[
inpIdx
],
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneGradTmp
->
clear
();
// move the data-pointer
tgtGradData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channels_
[
inpIdx
];
}
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.h
浏览文件 @
cfc965d5
...
@@ -15,9 +15,9 @@ limitations under the License. */
...
@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Matrix.h"
#include <vector>
#include <vector>
#include "ExpandConvBaseLayer.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -28,65 +28,18 @@ namespace paddle {
...
@@ -28,65 +28,18 @@ namespace paddle {
*
*
* The config file api is img_conv_layer.
* The config file api is img_conv_layer.
*/
*/
class
ExpandConvLayer
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/// Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW)
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
class
ExpandConvLayer
:
public
ExpandConvBaseLayer
{
public:
public:
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ExpandConvBaseLayer
(
config
)
{}
~
ExpandConvLayer
()
{}
~
ExpandConvLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
size_t
getOutputSize
();
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Create or resize transOutValue_.
*/
void
resetConvOutput
(
size_t
batchSize
,
int
inIdx
);
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one input sample and perform matrix multiplication.
*/
void
expandFwdOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
);
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
void
forward
(
PassType
passType
);
void
forward
(
PassType
passType
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
backward
(
const
UpdateCallback
&
callback
);
void
backward
(
const
UpdateCallback
&
callback
);
void
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
v
,
int
inpIdx
);
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ExpandConvTransLayer.cpp
0 → 100644
浏览文件 @
cfc965d5
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvTransLayer.h"
/* The implementation of the convTransLayer is basically a swap of forward and
* backward of the original convLayer.
* The variable naming follows the convention of the convLayer.
* */
namespace
paddle
{
REGISTER_LAYER
(
exconvt
,
ExpandConvTransLayer
);
bool
ExpandConvTransLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
return
true
;
}
void
ExpandConvTransLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
/* malloc memory for the output_ if necessary */
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
resetOutput
(
batchSize
,
getOutputSize
());
MatrixPtr
output
=
nullptr
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
LayerPtr
prevLayer
=
getPrev
(
i
);
output
=
prevLayer
->
getOutputValue
();
REGISTER_TIMER_INFO
(
"shrinkFwd"
,
getName
().
c_str
());
bpropActs
(
output
,
getOutputValue
(),
i
);
}
/* add the bias-vector */
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
addSharedBias
();
}
else
{
addUnsharedBias
();
}
}
/* activation */
forwardActivation
();
}
void
ExpandConvTransLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
MatrixPtr
imageGrad
=
getOutputGrad
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
bpropBiases
(
imageGrad
);
/* Increasing the number of gradient */
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
for
(
size_t
off
=
0
;
off
<
imageGrad
->
getHeight
();
off
++
)
{
if
(
getPrev
(
i
)
->
getOutputGrad
())
{
expandFwdOnce
(
imageGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
,
off
);
}
}
if
(
weights_
[
i
]
->
getWGrad
())
{
/* Then, calculate the W-gradient for the current layer */
bpropWeights
(
imageGrad
,
getPrev
(
i
)
->
getOutputValue
(),
i
);
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
// namespace paddle
paddle/gserver/layers/ExpandConvTransLayer.h
0 → 100644
浏览文件 @
cfc965d5
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/math/Matrix.h"
#include <vector>
#include "ExpandConvBaseLayer.h"
namespace
paddle
{
/**
* @brief A subclass of convolution layer.
* This layer expands input and use matrix multiplication to
* calculate convolution transpose (deconv) operation.
*
* The config file api is img_conv_layer with flag trans=True.
*/
class
ExpandConvTransLayer
:
public
ExpandConvBaseLayer
{
public:
explicit
ExpandConvTransLayer
(
const
LayerConfig
&
config
)
:
ExpandConvBaseLayer
(
config
)
{}
~
ExpandConvTransLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
void
forward
(
PassType
passType
);
void
backward
(
const
UpdateCallback
&
callback
);
};
}
// namespace paddle
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
cfc965d5
...
@@ -26,6 +26,14 @@ add_unittest_without_exec(test_ActivationGrad
...
@@ -26,6 +26,14 @@ add_unittest_without_exec(test_ActivationGrad
TestUtil.cpp
)
TestUtil.cpp
)
add_test
(
NAME test_ActivationGrad
add_test
(
NAME test_ActivationGrad
COMMAND test_ActivationGrad
)
COMMAND test_ActivationGrad
)
################# test_ConvTrans #######################
add_unittest_without_exec
(
test_ConvTrans
test_ConvTrans.cpp
LayerGradUtil.cpp
TestUtil.cpp
)
add_test
(
NAME test_ConvTrans
COMMAND test_ConvTrans
)
################## test_Evaluator #######################
################## test_Evaluator #######################
add_unittest
(
test_Evaluator
add_unittest
(
test_Evaluator
...
...
paddle/gserver/tests/test_ConvTrans.cpp
0 → 100644
浏览文件 @
cfc965d5
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include <string>
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
#include "paddle/math/MathUtils.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
P_DECLARE_bool
(
use_gpu
);
P_DECLARE_int32
(
gpu_id
);
P_DECLARE_double
(
checkgrad_eps
);
P_DECLARE_bool
(
thread_local_rand_use_global_seed
);
P_DECLARE_bool
(
prev_batch_state
);
// Test that the convTrans forward is the same as conv backward
TEST
(
Layer
,
convTransLayerFwd
)
{
// Setting up conv-trans layer
TestConfig
configt
;
configt
.
biasSize
=
3
;
configt
.
layerConfig
.
set_type
(
"exconvt"
);
configt
.
layerConfig
.
set_num_filters
(
3
);
configt
.
layerConfig
.
set_partial_sum
(
1
);
configt
.
layerConfig
.
set_shared_biases
(
true
);
configt
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
384
});
LayerInputConfig
*
input
=
configt
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
4
);
conv
->
set_channels
(
16
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
3
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
configt
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
configt
.
layerConfig
.
num_filters
());
configt
.
layerConfig
.
set_name
(
"convTrans"
);
// data layer initialize
std
::
vector
<
DataLayerPtr
>
dataLayers
;
LayerMap
layerMap
;
vector
<
Argument
>
datas
;
initDataLayer
(
configt
,
&
dataLayers
,
&
datas
,
&
layerMap
,
"convTrans"
,
100
,
false
,
false
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters
;
LayerPtr
convtLayer
;
initTestLayer
(
configt
,
&
layerMap
,
&
parameters
,
&
convtLayer
);
convtLayer
->
getBiasParameter
()
->
zeroMem
();
convtLayer
->
forward
(
PASS_GC
);
// Setting up conv-layer config
TestConfig
config
;
config
.
biasSize
=
16
;
config
.
layerConfig
.
set_type
(
"exconv"
);
config
.
layerConfig
.
set_num_filters
(
16
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
768
,
384
});
input
=
config
.
layerConfig
.
add_inputs
();
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
4
);
conv
->
set_channels
(
3
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
set_name
(
"conv"
);
// data layer initialize
std
::
vector
<
DataLayerPtr
>
dataLayers2
;
LayerMap
layerMap2
;
vector
<
Argument
>
datas2
;
initDataLayer
(
config
,
&
dataLayers2
,
&
datas2
,
&
layerMap2
,
"conv"
,
100
,
false
,
false
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters2
;
LayerPtr
convLayer
;
initTestLayer
(
config
,
&
layerMap2
,
&
parameters2
,
&
convLayer
);
// Sync convLayer and convtLayer parameter
convLayer
->
getBiasParameter
()
->
zeroMem
();
convLayer
->
getParameters
()[
0
]
->
getBuf
(
PARAMETER_VALUE
)
->
copyFrom
(
*
(
convtLayer
->
getParameters
()[
0
]
->
getBuf
(
PARAMETER_VALUE
)));
// Set convLayer outputGrad as convTransLayer input value
convLayer
->
forward
(
PASS_GC
);
convLayer
->
getOutput
().
grad
->
copyFrom
(
*
(
dataLayers
[
0
]
->
getOutputValue
()));
vector
<
int
>
callbackFlags
(
parameters2
.
size
(),
0
);
auto
callback
=
[
&
](
Parameter
*
para
)
{
++
callbackFlags
[
para
->
getID
()];
};
convLayer
->
backward
(
callback
);
// Check that the convLayer backward is the same as convTransLayer forward
checkMatrixEqual
(
convtLayer
->
getOutputValue
(),
dataLayers2
[
0
]
->
getOutputGrad
());
}
// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
void
doOneConvtTest
(
size_t
imgSize
,
size_t
output_x
,
size_t
stride
,
size_t
padding
,
size_t
filter_size
,
MatrixPtr
&
result
)
{
TestConfig
configt
;
configt
.
biasSize
=
1
;
configt
.
layerConfig
.
set_type
(
"exconvt"
);
configt
.
layerConfig
.
set_num_filters
(
1
);
configt
.
layerConfig
.
set_partial_sum
(
1
);
configt
.
layerConfig
.
set_shared_biases
(
true
);
configt
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
output_x
*
output_x
,
filter_size
*
filter_size
});
LayerInputConfig
*
input
=
configt
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
filter_size
);
conv
->
set_filter_size_y
(
filter_size
);
conv
->
set_channels
(
1
);
conv
->
set_padding
(
padding
);
conv
->
set_padding_y
(
padding
);
conv
->
set_stride
(
stride
);
conv
->
set_stride_y
(
stride
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
1
);
conv
->
set_img_size
(
imgSize
);
conv
->
set_output_x
(
output_x
);
configt
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
configt
.
layerConfig
.
num_filters
());
configt
.
layerConfig
.
set_name
(
"convTrans"
);
std
::
vector
<
DataLayerPtr
>
dataLayers
;
LayerMap
layerMap
;
vector
<
Argument
>
datas
;
initDataLayer
(
configt
,
&
dataLayers
,
&
datas
,
&
layerMap
,
"convTrans"
,
1
,
false
,
false
);
dataLayers
[
0
]
->
getOutputValue
()
->
zeroMem
();
dataLayers
[
0
]
->
getOutputValue
()
->
add
(
1.0
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters
;
LayerPtr
convtLayer
;
initTestLayer
(
configt
,
&
layerMap
,
&
parameters
,
&
convtLayer
);
convtLayer
->
getBiasParameter
()
->
zeroMem
();
convtLayer
->
getParameters
()[
0
]
->
zeroMem
();
convtLayer
->
getParameters
()[
0
]
->
getBuf
(
PARAMETER_VALUE
)
->
add
(
1.0
);
convtLayer
->
forward
(
PASS_GC
);
checkMatrixEqual
(
convtLayer
->
getOutputValue
(),
result
);
}
TEST
(
Layer
,
convTransLayerFwd2
)
{
MatrixPtr
result
;
result
=
Matrix
::
create
(
1
,
5
*
5
,
false
,
false
);
result
->
zeroMem
();
result
->
add
(
1.0
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
1
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
5
,
result
);
float
resultData
[]
=
{
1
,
2
,
2
,
2
,
1
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
1
,
2
,
2
,
2
,
1
};
result
->
setData
(
resultData
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
4
,
result
);
float
resultData2
[]
=
{
1
,
2
,
2
,
2
,
1
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
1
,
2
,
2
,
2
,
1
};
result
->
setData
(
resultData2
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
2
,
/* stride */
2
,
/* padding */
1
,
/* filter_size */
5
,
result
);
float
resultData3
[]
=
{
1
,
1
,
2
,
1
,
1
,
1
,
1
,
2
,
1
,
1
,
2
,
2
,
4
,
2
,
2
,
1
,
1
,
2
,
1
,
1
,
1
,
1
,
2
,
1
,
1
};
result
->
setData
(
resultData3
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
2
,
/* stride */
2
,
/* padding */
0
,
/* filter_size */
3
,
result
);}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
return
RUN_ALL_TESTS
();
}
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
cfc965d5
...
@@ -302,6 +302,8 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
...
@@ -302,6 +302,8 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"conv"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
}
TEST
(
Layer
,
convLayer
)
{
TEST
(
Layer
,
convLayer
)
{
...
@@ -312,6 +314,46 @@ TEST(Layer, convLayer) {
...
@@ -312,6 +314,46 @@ TEST(Layer, convLayer) {
#endif
#endif
}
}
void
testConvTransLayer
(
const
string
&
type
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
biasSize
=
3
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_num_filters
(
3
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
288
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
3
);
conv
->
set_channels
(
16
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
3
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"convTrans"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"convTrans"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
TEST
(
Layer
,
convTransLayer
)
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testConvTransLayer
(
"exconvt"
,
/* trans= */
false
,
/* useGpu= */
useGpu
);
}
}
TEST
(
Layer
,
blockExpandLayer
)
{
TEST
(
Layer
,
blockExpandLayer
)
{
TestConfig
config
;
TestConfig
config
;
config
.
biasSize
=
0
;
config
.
biasSize
=
0
;
...
...
paddle/math/MathUtils.cpp
浏览文件 @
cfc965d5
...
@@ -80,4 +80,17 @@ int outputSize(int imageSize, int filterSize, int padding, int stride,
...
@@ -80,4 +80,17 @@ int outputSize(int imageSize, int filterSize, int padding, int stride,
return
outputSize
;
return
outputSize
;
}
}
int
imageSize
(
int
outputSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
)
{
int
imageSize
;
if
(
!
caffeMode
)
{
imageSize
=
(
outputSize
-
1
)
*
stride
+
filterSize
-
2
*
padding
-
stride
+
1
;
}
else
{
imageSize
=
(
outputSize
-
1
)
*
stride
+
filterSize
-
2
*
padding
;
}
CHECK_GE
(
imageSize
,
1
);
return
imageSize
;
}
}
// namespace paddle
}
// namespace paddle
paddle/math/MathUtils.h
浏览文件 @
cfc965d5
...
@@ -60,4 +60,11 @@ void sparseRand(int* major, int* minor, int nnz, int majorLen, int minorMax,
...
@@ -60,4 +60,11 @@ void sparseRand(int* major, int* minor, int nnz, int majorLen, int minorMax,
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
);
bool
caffeMode
);
/**
* Calculate image size based on output size and caffeMode_.
* It is the reverse function of outputSize()
*/
int
imageSize
(
int
outputSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
);
}
// namespace paddle
}
// namespace paddle
python/paddle/trainer/config_parser.py
浏览文件 @
cfc965d5
...
@@ -649,7 +649,8 @@ class ConvProjection(Projection):
...
@@ -649,7 +649,8 @@ class ConvProjection(Projection):
parse_conv
(
conv_conf
,
parse_conv
(
conv_conf
,
input_layer_name
,
input_layer_name
,
self
.
proj_conf
.
conv_conf
)
self
.
proj_conf
.
conv_conf
,
num_filters
)
# TODO: support rectangle input
# TODO: support rectangle input
self
.
proj_conf
.
output_size
=
(
self
.
proj_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
self
.
proj_conf
.
output_size
=
(
self
.
proj_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
...
@@ -730,7 +731,8 @@ class ConvOperator(Operator):
...
@@ -730,7 +731,8 @@ class ConvOperator(Operator):
parse_conv
(
conv_conf
,
parse_conv
(
conv_conf
,
MakeLayerNameInSubmodel
(
input_layer_names
[
0
]),
MakeLayerNameInSubmodel
(
input_layer_names
[
0
]),
self
.
operator_conf
.
conv_conf
)
self
.
operator_conf
.
conv_conf
,
num_filters
)
self
.
operator_conf
.
output_size
=
(
self
.
operator_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
self
.
operator_conf
.
output_size
=
(
self
.
operator_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
config_assert
(
len
(
input_layer_names
)
==
2
,
"Conv is binary operator"
)
config_assert
(
len
(
input_layer_names
)
==
2
,
"Conv is binary operator"
)
...
@@ -1017,6 +1019,17 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
...
@@ -1017,6 +1019,17 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
else
:
else
:
return
1
+
int
(
math
.
ceil
(
output
))
return
1
+
int
(
math
.
ceil
(
output
))
'''
calcualte image_size based on output_size for convolution.
It is the reverse function of cnn_output_size
'''
def
cnn_image_size
(
output_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
if
caffe_mode
:
img_size
=
(
output_size
-
1
)
*
stride
+
filter_size
-
2
*
padding
else
:
img_size
=
(
output_size
-
2
)
*
stride
+
filter_size
-
2
*
padding
+
1
return
img_size
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
pool_conf
.
pool_type
=
pool
.
pool_type
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
,
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
,
...
@@ -1082,7 +1095,11 @@ def parse_norm(norm, input_layer_name, norm_conf):
...
@@ -1082,7 +1095,11 @@ def parse_norm(norm, input_layer_name, norm_conf):
else
:
else
:
norm_conf
.
scale
/=
norm
.
size
**
2
norm_conf
.
scale
/=
norm
.
size
**
2
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
):
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
,
num_filters
,
trans
=
False
):
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
conv_conf
.
channels
=
conv
.
channels
conv_conf
.
channels
=
conv
.
channels
...
@@ -1091,20 +1108,37 @@ def parse_conv(conv, input_layer_name, conv_conf):
...
@@ -1091,20 +1108,37 @@ def parse_conv(conv, input_layer_name, conv_conf):
conv_conf
.
stride
=
conv
.
stride
conv_conf
.
stride
=
conv
.
stride
conv_conf
.
stride_y
=
conv
.
stride_y
conv_conf
.
stride_y
=
conv
.
stride_y
conv_conf
.
groups
=
conv
.
groups
conv_conf
.
groups
=
conv
.
groups
conv_conf
.
filter_channels
=
conv
.
channels
/
conv
.
groups
conv_conf
.
caffe_mode
=
conv
.
caffe_mode
conv_conf
.
caffe_mode
=
conv
.
caffe_mode
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
if
not
trans
:
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
conv_conf
.
filter_channels
=
conv
.
channels
/
conv
.
groups
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
img_size
=
int
(
img_pixels
**
0.5
)
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
config_assert
((
conv_conf
.
img_size
**
2
)
==
img_pixels
,
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
(
"Input layer %s: Incorrect input image size %d for input "
g_layer_map
[
input_layer_name
].
size
))
+
"image pixels %d"
)
conv_conf
.
img_size
=
int
(
img_pixels
**
0.5
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
config_assert
((
conv_conf
.
img_size
**
2
)
==
img_pixels
,
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
(
"Input layer %s: Incorrect input image size %d for input "
conv_conf
.
padding
,
conv_conf
.
stride
,
+
"image pixels %d"
)
conv_conf
.
caffe_mode
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
else
:
conv_conf
.
filter_channels
=
num_filters
/
conv
.
groups
outputSize
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
output_x
=
int
(
outputSize
**
0.5
)
config_assert
((
conv_conf
.
output_x
**
2
)
==
outputSize
,
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
output_x
,
outputSize
))
conv_conf
.
img_size
=
cnn_image_size
(
conv_conf
.
output_x
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
def
parse_block_expand
(
block_expand
,
input_layer_name
,
block_expand_conf
):
def
parse_block_expand
(
block_expand
,
input_layer_name
,
block_expand_conf
):
block_expand_conf
.
channels
=
block_expand
.
channels
block_expand_conf
.
channels
=
block_expand
.
channels
...
@@ -1587,7 +1621,8 @@ class ConvLayerBase(LayerBase):
...
@@ -1587,7 +1621,8 @@ class ConvLayerBase(LayerBase):
parse_conv
(
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
)
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
psize
=
self
.
calc_parameter_size
(
conv_conf
)
psize
=
self
.
calc_parameter_size
(
conv_conf
)
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
...
@@ -1612,6 +1647,63 @@ class ConvLayer(ConvLayerBase):
...
@@ -1612,6 +1647,63 @@ class ConvLayer(ConvLayerBase):
class
ConvLayer
(
ConvLayerBase
):
class
ConvLayer
(
ConvLayerBase
):
layer_type
=
'cudnn_conv'
layer_type
=
'cudnn_conv'
@
config_layer
(
'convt'
)
class
ConvTransLayerBase
(
LayerBase
):
layer_type
=
'convt'
def
__init__
(
self
,
name
,
inputs
=
[],
bias
=
True
,
num_filters
=
None
,
shared_biases
=
False
,
**
xargs
):
super
(
ConvTransLayerBase
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# cudnn_convt has not been implemented so use exconvt only
self
.
layer_type
=
"exconvt"
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
if
shared_biases
is
not
None
:
self
.
config
.
shared_biases
=
shared_biases
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
,
trans
=
True
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
psize
=
self
.
calc_parameter_size
(
conv_conf
)
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_layer_size
(
(
conv_conf
.
img_size
**
2
)
*
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
if
shared_biases
:
psize
=
self
.
config
.
num_filters
self
.
create_bias_parameter
(
bias
,
psize
,
[
psize
,
1
])
def
calc_parameter_size
(
self
,
conv_conf
):
return
conv_conf
.
channels
*
conv_conf
.
filter_channels
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
)
@
config_layer
(
'exconvt'
)
class
ConvTransLayer
(
ConvTransLayerBase
):
layer_type
=
'exconvt'
@
config_layer
(
'norm'
)
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
class
NormLayer
(
LayerBase
):
def
__init__
(
def
__init__
(
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
cfc965d5
...
@@ -78,6 +78,7 @@ class LayerType(object):
...
@@ -78,6 +78,7 @@ class LayerType(object):
COSINE_SIM
=
'cos'
COSINE_SIM
=
'cos'
HSIGMOID
=
'hsigmoid'
HSIGMOID
=
'hsigmoid'
CONV_LAYER
=
"conv"
CONV_LAYER
=
"conv"
CONVTRANS_LAYER
=
"convt"
POOL_LAYER
=
"pool"
POOL_LAYER
=
"pool"
BATCH_NORM_LAYER
=
'batch_norm'
BATCH_NORM_LAYER
=
'batch_norm'
NORM_LAYER
=
'norm'
NORM_LAYER
=
'norm'
...
@@ -1517,7 +1518,8 @@ def img_conv_layer(input, filter_size, num_filters,
...
@@ -1517,7 +1518,8 @@ def img_conv_layer(input, filter_size, num_filters,
name
=
None
,
num_channels
=
None
,
name
=
None
,
num_channels
=
None
,
act
=
None
,
groups
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
None
,
act
=
None
,
groups
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
layer_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
):
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
trans
=
False
):
"""
"""
Convolution layer for image. Paddle only support square input currently and
Convolution layer for image. Paddle only support square input currently and
thus input image's width equals height.
thus input image's width equals height.
...
@@ -1525,7 +1527,14 @@ def img_conv_layer(input, filter_size, num_filters,
...
@@ -1525,7 +1527,14 @@ def img_conv_layer(input, filter_size, num_filters,
The details of convolution layer, please refer UFLDL's `convolution
The details of convolution layer, please refer UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/
<http://ufldl.stanford.edu/tutorial/supervised/
FeatureExtractionUsingConvolution/>`_ .
FeatureExtractionUsingConvolution/>`_ .
Convolution Transpose (deconv) layer for image. Paddle only support square
input currently and thus input image's width equals height.
The details of convolution transpose layer,
please refer to the following explanation and references therein
<http://datascience.stackexchange.com/questions/6107/
what-are-deconvolutional-layers/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when
The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's
input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters * num_group.
num_filters * num_group.
...
@@ -1575,6 +1584,8 @@ def img_conv_layer(input, filter_size, num_filters,
...
@@ -1575,6 +1584,8 @@ def img_conv_layer(input, filter_size, num_filters,
:type shared_biases: bool
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:type layer_attr: ExtraLayerAttribute
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:return: LayerOutput object.
:return: LayerOutput object.
:rtype: LayerOutput
:rtype: LayerOutput
"""
"""
...
@@ -1610,6 +1621,9 @@ def img_conv_layer(input, filter_size, num_filters,
...
@@ -1610,6 +1621,9 @@ def img_conv_layer(input, filter_size, num_filters,
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
param_attr
.
attr
[
"initial_smart"
]
=
False
lt
=
LayerType
.
CONVTRANS_LAYER
if
trans
else
LayerType
.
CONV_LAYER
Layer
(
Layer
(
name
=
name
,
name
=
name
,
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
...
@@ -1622,10 +1636,10 @@ def img_conv_layer(input, filter_size, num_filters,
...
@@ -1622,10 +1636,10 @@ def img_conv_layer(input, filter_size, num_filters,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
shared_biases
=
shared_biases
,
shared_biases
=
shared_biases
,
type
=
LayerType
.
CONV_LAYER
,
type
=
lt
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
)
return
LayerOutput
(
name
,
LayerType
.
CONV_LAYER
,
parents
=
[
input
],
return
LayerOutput
(
name
,
lt
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_filters
)
activation
=
act
,
num_filters
=
num_filters
)
...
...
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
浏览文件 @
cfc965d5
...
@@ -9,7 +9,7 @@ protostr=$PWD/protostr
...
@@ -9,7 +9,7 @@ protostr=$PWD/protostr
configs
=(
test_fc layer_activations projections test_print_layer
configs
=(
test_fc layer_activations projections test_print_layer
test_sequence_pooling test_lstmemory_layer test_grumemory_layer
test_sequence_pooling test_lstmemory_layer test_grumemory_layer
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers util_layers simple_rnn_layers unused_layers test_cost_layers
img_layers
img_trans_layers
util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group shared_fc shared_lstm test_cost_layers_with_weight
test_rnn_group shared_fc shared_lstm test_cost_layers_with_weight
test_maxout test_bi_grumemory math_ops
)
test_maxout test_bi_grumemory math_ops
)
...
...
python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py
0 → 100644
浏览文件 @
cfc965d5
from
paddle.trainer_config_helpers
import
*
settings
(
learning_rate
=
1e-3
,
batch_size
=
1000
)
img
=
data_layer
(
name
=
'image'
,
size
=
227
*
227
)
# the parse_conv in config_parse.py is not strictly accurate when filter_size
# is not square. So here set square filter_size.
img_conv
=
img_conv_layer
(
input
=
img
,
num_channels
=
1
,
num_filters
=
64
,
filter_size
=
(
32
,
32
),
padding
=
(
1
,
1
),
stride
=
(
1
,
1
),
act
=
LinearActivation
(),
trans
=
True
)
img_bn
=
batch_norm_layer
(
input
=
img_conv
,
act
=
ReluActivation
())
img_norm
=
img_cmrnorm_layer
(
input
=
img_bn
,
size
=
32
)
img_pool
=
img_pool_layer
(
input
=
img_conv
,
pool_size
=
32
,
pool_type
=
MaxPooling
())
outputs
(
img_pool
,
img_norm
)
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
0 → 100644
浏览文件 @
cfc965d5
type: "nn"
layers {
name: "image"
type: "data"
size: 51529
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconvt"
size: 4194304
active_type: ""
inputs {
input_layer_name: "image"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 32
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 64
output_x: 227
img_size: 256
caffe_mode: true
filter_size_y: 32
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 64
shared_biases: true
}
layers {
name: "__batch_norm_0__"
type: "batch_norm"
size: 4194304
active_type: "relu"
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w0"
image_conf {
channels: 64
img_size: 256
}
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w1"
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w2"
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
}
layers {
name: "__crmnorm_0__"
type: "norm"
size: 4194304
active_type: ""
inputs {
input_layer_name: "__batch_norm_0__"
norm_conf {
norm_type: "cmrnorm-projection"
channels: 64
size: 32
scale: 0.0004
pow: 0.75
output_x: 256
img_size: 256
blocked: false
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 3240000
active_type: ""
inputs {
input_layer_name: "__conv_0__"
pool_conf {
pool_type: "max-projection"
channels: 64
size_x: 32
stride: 1
output_x: 225
img_size: 256
padding: 0
size_y: 32
stride_y: 1
output_y: 225
img_size_y: 256
padding_y: 0
}
}
}
parameters {
name: "___conv_0__.w0"
size: 65536
initial_mean: 0.0
initial_std: 0.0441941738242
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 64
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w0"
size: 64
initial_mean: 1.0
initial_std: 0.0
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w1"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.w2"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
}
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
sub_models {
name: "root"
layer_names: "image"
layer_names: "__conv_0__"
layer_names: "__batch_norm_0__"
layer_names: "__crmnorm_0__"
layer_names: "__pool_0__"
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
is_recurrent_layer_group: false
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录