Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
cf8a5573
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cf8a5573
编写于
2月 15, 2022
作者:
F
feng_shuai
提交者:
GitHub
2月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pool2d_coonvert_ut (#39545)
上级
a558d386
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
203 addition
and
143 deletion
+203
-143
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
+92
-54
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu
+53
-8
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h
+38
-46
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pool2d.py
...d/tests/unittests/ir/inference/test_trt_convert_pool2d.py
+9
-35
python/paddle/fluid/tests/unittests/ir/inference/test_trt_pool_op.py
...le/fluid/tests/unittests/ir/inference/test_trt_pool_op.py
+11
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
浏览文件 @
cf8a5573
...
...
@@ -106,6 +106,9 @@ class Pool2dOpConverter : public OpConverter {
reduce_operation
=
nvinfer1
::
ReduceOperation
::
kAVG
;
plugin_pool_type
=
plugin
::
PoolPlugin
::
PoolType
::
avg
;
}
if
(
global_pooling
||
adaptive
)
{
std
::
fill
(
paddings
.
begin
(),
paddings
.
end
(),
0
);
}
if
(
padding_algorithm
==
"VALID"
)
{
std
::
fill
(
paddings
.
begin
(),
paddings
.
end
(),
0
);
...
...
@@ -136,6 +139,46 @@ class Pool2dOpConverter : public OpConverter {
#endif
}
std
::
vector
<
int
>
real_paddings
=
paddings
;
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
int
copy_pad
=
*
(
paddings
.
begin
()
+
i
);
real_paddings
.
insert
(
real_paddings
.
begin
()
+
2
*
i
+
1
,
copy_pad
);
}
// SAME
if
(
padding_algorithm
==
"SAME"
)
{
// expand
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
int
copy_pad
=
*
(
paddings
.
begin
()
+
2
*
i
);
paddings
.
insert
(
paddings
.
begin
()
+
2
*
i
+
1
,
copy_pad
);
}
// compute
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
int
out_size
=
(
input_shape
.
d
[
2
+
i
]
+
strides
[
i
]
-
1
)
/
strides
[
i
];
int
pad_sum
=
std
::
max
(
(
out_size
-
1
)
*
strides
[
i
]
+
ksize
[
i
]
-
input_shape
.
d
[
2
+
i
],
0
);
int
pad_0
=
pad_sum
/
2
;
int
pad_1
=
pad_sum
-
pad_0
;
paddings
[
i
*
2
]
=
pad_0
;
paddings
[
i
*
2
+
1
]
=
pad_1
;
}
real_paddings
=
paddings
;
// slice
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
paddings
.
erase
(
paddings
.
begin
()
+
i
+
1
);
}
}
// VALID
if
(
padding_algorithm
==
"VALID"
)
{
std
::
fill
(
real_paddings
.
begin
(),
real_paddings
.
end
(),
0
);
}
if
(
global_pooling
==
true
&&
!
engine_
->
with_dynamic_shape
())
{
nv_ksize
.
d
[
0
]
=
input_shape
.
d
[
input_dims
-
2
];
nv_ksize
.
d
[
1
]
=
input_shape
.
d
[
input_dims
-
1
];
ksize
[
0
]
=
input_shape
.
d
[
input_dims
-
2
];
ksize
[
1
]
=
input_shape
.
d
[
input_dims
-
1
];
}
if
(
engine_
->
with_dynamic_shape
())
{
if
(
!
adaptive
&&
!
global_pooling
&&
!
ceil_mode
)
{
// input_shape.d < 0 means we can't get shape info here.
...
...
@@ -173,15 +216,15 @@ class Pool2dOpConverter : public OpConverter {
pool_layer
->
setPaddingMode
(
nvinfer1
::
PaddingMode
::
kEXPLICIT_ROUND_UP
);
}
layer
=
pool_layer
;
}
else
if
(
global_pooling
)
{
}
else
if
(
global_pooling
&&
!
adaptive
)
{
auto
*
reduce_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
input1
,
reduce_operation
,
12
,
true
);
layer
=
reduce_layer
;
}
else
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
PoolPluginDynamic
*
plugin
=
new
plugin
::
PoolPluginDynamic
(
ceil_mode
,
pool_type
,
adaptive
,
ksize
,
strides
,
paddings
,
global_pooling
);
plugin
::
PoolPluginDynamic
*
plugin
=
new
plugin
::
PoolPluginDynamic
(
ceil_mode
,
pool_type
,
adaptive
,
exclusive
,
ksize
,
strides
,
paddings
,
global_pooling
);
layer
=
engine_
->
AddDynamicPlugin
(
&
input1
,
1
,
plugin
);
#endif
}
...
...
@@ -195,21 +238,13 @@ class Pool2dOpConverter : public OpConverter {
return
;
}
if
(
global_pooling
==
true
)
{
nv_ksize
.
d
[
0
]
=
input_shape
.
d
[
input_dims
-
2
];
nv_ksize
.
d
[
1
]
=
input_shape
.
d
[
input_dims
-
1
];
if
(
global_pooling
==
true
&&
adaptive
==
false
)
{
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
input1
,
nv_pool_type
,
nv_ksize
);
PADDLE_ENFORCE_NOT_NULL
(
pool_layer
,
platform
::
errors
::
Fatal
(
"trt pool layer in converter could not be created."
));
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
pool_layer
->
setStride
(
nv_strides
);
pool_layer
->
setPadding
(
nv_paddings
);
if
(
padding_algorithm
==
"SAME"
)
{
pool_layer
->
setPaddingMode
(
nvinfer1
::
PaddingMode
::
kSAME_UPPER
);
}
pool_layer
->
setAverageCountExcludesPadding
(
exclusive
);
pool_layer
->
setName
((
"pool2d (Output: "
+
output_name
+
")"
).
c_str
());
pool_layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
pool_layer
->
getOutput
(
0
));
...
...
@@ -222,58 +257,61 @@ class Pool2dOpConverter : public OpConverter {
if
(
!
adaptive
)
{
if
(
ceil_mode
)
{
nvinfer1
::
DimsHW
pre_pad
(
0
,
0
)
;
nvinfer1
::
DimsHW
post_pad
(
0
,
0
);
// If ceil mode is true, we will pad the appropriate size to the input.
DealCeilMode
(
input_shape
,
ksize
,
strides
,
paddings
,
&
pre_pad
,
&
post_pad
,
input_dims
);
auto
*
pad_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Padding
,
*
input1
,
pre_pad
,
post_pad
);
std
::
vector
<
int
>
input_shape_v
;
for
(
int
i
=
0
;
i
<
input_dims
;
i
++
)
{
input_shape_v
.
push_back
(
input_shape
.
d
[
i
]);
}
plugin
::
PoolPlugin
*
plugin
=
new
plugin
::
PoolPlugin
(
ceil_mode
,
plugin_pool_type
,
adaptive
,
exclusive
,
ksize
,
strides
,
paddings
,
input_shape_v
,
real_paddings
);
auto
*
pool_layer
=
engine_
->
AddPlugin
(
&
input1
,
1
,
plugin
);
PADDLE_ENFORCE_NOT_NULL
(
p
ad_layer
,
platform
::
errors
::
Fatal
(
"Pad layer in poolOp converter could not be "
"created. The pointer to pad layer is `NULL`
."
));
input1
=
pad_layer
->
getOutput
(
0
)
;
}
p
ool_layer
,
platform
::
errors
::
Fatal
(
"trt pool plugin layer in converter could not be created
."
));
layer
=
pool_layer
;
}
else
{
#if IS_TRT_VERSION_GE(8000)
// Exclude padding pixels from the average mean is not supported well by
// TRT
// so enable padding for trt8.0 above.
if
((
g_post_pad
.
w
()
>
0
||
g_post_pad
.
h
()
>
0
)
&&
(
padding_algorithm
!=
"SAME"
)
&&
!
ceil_mode
)
{
auto
*
pad_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Padding
,
*
input1
,
g_pre_pad
,
g_post_pad
);
PADDLE_ENFORCE_NOT_NULL
(
pad_layer
,
platform
::
errors
::
Fatal
(
"Pad layer in poolOp converter could not be "
"created. The pointer to pad layer is `NULL`."
));
input1
=
pad_layer
->
getOutput
(
0
);
}
// Exclude padding pixels from the average mean is not supported well by
// TRT
// so enable padding for trt8.0 above.
if
((
g_post_pad
.
w
()
>
0
||
g_post_pad
.
h
()
>
0
)
&&
(
padding_algorithm
!=
"SAME"
)
&&
!
ceil_mode
)
{
auto
*
pad_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Padding
,
*
input1
,
g_pre_pad
,
g_post_pad
);
PADDLE_ENFORCE_NOT_NULL
(
pad_layer
,
platform
::
errors
::
Fatal
(
"Pad layer in poolOp converter could not be "
"created. The pointer to pad layer is `NULL`."
));
input1
=
pad_layer
->
getOutput
(
0
);
}
#endif
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
input1
,
nv_pool_type
,
nv_ksize
);
PADDLE_ENFORCE_NOT_NULL
(
pool_layer
,
platform
::
errors
::
Fatal
(
"trt pool layer in converter could not be created."
));
pool_layer
->
setStride
(
nv_strides
);
pool_layer
->
setPadding
(
nv_paddings
);
if
(
padding_algorithm
==
"SAME"
)
{
pool_layer
->
setPaddingMode
(
nvinfer1
::
PaddingMode
::
kSAME_UPPER
);
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
input1
,
nv_pool_type
,
nv_ksize
);
PADDLE_ENFORCE_NOT_NULL
(
pool_layer
,
platform
::
errors
::
Fatal
(
"trt pool layer in converter could not be created."
));
pool_layer
->
setStride
(
nv_strides
);
pool_layer
->
setPadding
(
nv_paddings
);
if
(
padding_algorithm
==
"SAME"
)
{
pool_layer
->
setPaddingMode
(
nvinfer1
::
PaddingMode
::
kSAME_UPPER
);
}
pool_layer
->
setAverageCountExcludesPadding
(
exclusive
);
layer
=
pool_layer
;
}
pool_layer
->
setAverageCountExcludesPadding
(
exclusive
);
layer
=
pool_layer
;
}
else
{
// Average pooling needs to exclude the padding pixels from the average
// mean.
// It is not supported well by TRT, we use a plugin here
.
// It is not supported well by TRT, we use a plugin here
std
::
vector
<
int
>
input_shape_v
;
for
(
int
i
=
0
;
i
<
input_dims
;
i
++
)
{
input_shape_v
.
push_back
(
input_shape
.
d
[
i
]);
}
plugin
::
PoolPlugin
*
plugin
=
new
plugin
::
PoolPlugin
(
ceil_mode
,
plugin_pool_type
,
adaptive
,
ksize
,
strides
,
paddings
,
input_shape_v
);
plugin
::
PoolPlugin
*
plugin
=
new
plugin
::
PoolPlugin
(
ceil_mode
,
plugin_pool_type
,
adaptive
,
exclusive
,
ksize
,
strides
,
paddings
,
input_shape_v
,
real_paddings
);
auto
*
pool_layer
=
engine_
->
AddPlugin
(
&
input1
,
1
,
plugin
);
PADDLE_ENFORCE_NOT_NULL
(
pool_layer
,
...
...
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu
浏览文件 @
cf8a5573
...
...
@@ -35,6 +35,36 @@ nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
return
output_dims
;
}
size_t
PoolPlugin
::
getSerializationSize
()
const
TRT_NOEXCEPT
{
return
getBaseSerializationSize
()
+
SerializedSize
(
ceil_mode_
)
+
SerializedSize
(
pool_type_
)
+
SerializedSize
(
adaptive_
)
+
SerializedSize
(
exclusive_
)
+
SerializedSize
(
ksize_
)
+
SerializedSize
(
strides_
)
+
SerializedSize
(
paddings_
)
+
SerializedSize
(
real_paddings_
)
+
SerializedSize
(
input_shape_
)
+
SerializedSize
(
output_shape_
);
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
void
PoolPlugin
::
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
{
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
ceil_mode_
);
SerializeValue
(
&
buffer
,
pool_type_
);
SerializeValue
(
&
buffer
,
adaptive_
);
SerializeValue
(
&
buffer
,
exclusive_
);
SerializeValue
(
&
buffer
,
ksize_
);
SerializeValue
(
&
buffer
,
strides_
);
SerializeValue
(
&
buffer
,
paddings_
);
SerializeValue
(
&
buffer
,
real_paddings_
);
SerializeValue
(
&
buffer
,
input_shape_
);
SerializeValue
(
&
buffer
,
output_shape_
);
}
PoolPlugin
*
PoolPlugin
::
clone
()
const
TRT_NOEXCEPT
{
return
new
PoolPlugin
(
ceil_mode_
,
pool_type_
,
adaptive_
,
exclusive_
,
ksize_
,
strides_
,
paddings_
,
input_shape_
,
real_paddings_
);
}
int
PoolPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
#if IS_TRT_VERSION_LT(8000)
void
**
outputs
,
void
*
workspace
,
...
...
@@ -59,14 +89,15 @@ int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
paddle
::
operators
::
math
::
MaxPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
idata
,
input_shape
,
output_shape
,
ksize_
,
strides_
,
paddings_
,
true
,
adaptive_
,
odatas
[
0
],
stream
,
pool_process
);
paddings_
,
true
,
false
,
odatas
[
0
],
stream
,
pool_process
);
}
else
if
(
pool_type_
==
PoolType
::
avg
)
{
paddle
::
operators
::
math
::
AvgPool
<
float
>
pool_process
;
paddle
::
operators
::
math
::
Pool2dDirectCUDAFunctor
<
paddle
::
operators
::
math
::
AvgPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
idata
,
input_shape
,
output_shape
,
ksize_
,
strides_
,
paddings_
,
true
,
adaptive_
,
odatas
[
0
],
stream
,
pool_process
);
paddings_
,
exclusive_
,
adaptive_
,
odatas
[
0
],
stream
,
pool_process
);
}
return
cudaGetLastError
()
!=
cudaSuccess
;
...
...
@@ -82,6 +113,7 @@ PoolPluginDynamic::PoolPluginDynamic(void const *serialData,
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
pool_type
);
pool_type_
=
std
::
string
(
pool_type
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
adaptive_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
exclusive_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
ksize_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
strides_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
paddings_
);
...
...
@@ -90,21 +122,27 @@ PoolPluginDynamic::PoolPluginDynamic(void const *serialData,
size_t
PoolPluginDynamic
::
getSerializationSize
()
const
TRT_NOEXCEPT
{
return
SerializedSize
(
ceil_mode_
)
+
SerializedSize
(
pool_type_
.
c_str
())
+
SerializedSize
(
adaptive_
)
+
SerializedSize
(
ksiz
e_
)
+
SerializedSize
(
strides_
)
+
SerializedSize
(
padding
s_
)
+
SerializedSize
(
is_global_
);
SerializedSize
(
adaptive_
)
+
SerializedSize
(
exclusiv
e_
)
+
SerializedSize
(
ksize_
)
+
SerializedSize
(
stride
s_
)
+
SerializedSize
(
paddings_
)
+
SerializedSize
(
is_global_
);
}
void
PoolPluginDynamic
::
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
{
SerializeValue
(
&
buffer
,
ceil_mode_
);
SerializeValue
(
&
buffer
,
pool_type_
.
c_str
());
SerializeValue
(
&
buffer
,
adaptive_
);
SerializeValue
(
&
buffer
,
exclusive_
);
SerializeValue
(
&
buffer
,
ksize_
);
SerializeValue
(
&
buffer
,
strides_
);
SerializeValue
(
&
buffer
,
paddings_
);
SerializeValue
(
&
buffer
,
is_global_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
PoolPluginDynamic
::
clone
()
const
TRT_NOEXCEPT
{
return
new
PoolPluginDynamic
(
ceil_mode_
,
pool_type_
,
adaptive_
,
exclusive_
,
ksize_
,
strides_
,
paddings_
,
is_global_
);
}
nvinfer1
::
DimsExprs
PoolPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
...
...
@@ -117,11 +155,14 @@ nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
platform
::
errors
::
InvalidArgument
(
"The channel dimension should be "
"static, but we found it's dynamic."
));
nvinfer1
::
DimsExprs
output
(
inputs
[
0
]);
if
(
is_global_
)
{
if
(
is_global_
&&
!
adaptive_
)
{
output
.
d
[
2
]
=
expr_builder
.
constant
(
1
);
output
.
d
[
3
]
=
expr_builder
.
constant
(
1
);
return
output
;
}
if
(
is_global_
&&
adaptive_
)
{
return
inputs
[
0
];
}
if
(
adaptive_
)
{
output
.
d
[
2
]
=
expr_builder
.
constant
(
ksize_
[
0
]);
output
.
d
[
3
]
=
expr_builder
.
constant
(
ksize_
[
1
]);
...
...
@@ -245,6 +286,10 @@ int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
output_shape
[
2
]
=
data_dim
[
0
];
output_shape
[
3
]
=
data_dim
[
1
];
}
if
(
adaptive_
)
{
output_shape
[
2
]
=
h
;
output_shape
[
3
]
=
w
;
}
if
(
pool_type_
==
"max"
)
{
paddle
::
operators
::
math
::
MaxPool
<
float
>
pool_process
;
...
...
@@ -252,14 +297,14 @@ int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
paddle
::
operators
::
math
::
MaxPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
input
,
input_shape
,
output_shape
,
ksize
,
strides_
,
paddings
,
true
,
adaptive_
,
output
,
stream
,
pool_process
);
true
,
false
,
output
,
stream
,
pool_process
);
}
else
if
(
pool_type_
==
"avg"
)
{
paddle
::
operators
::
math
::
AvgPool
<
float
>
pool_process
;
paddle
::
operators
::
math
::
Pool2dDirectCUDAFunctor
<
paddle
::
operators
::
math
::
AvgPool
<
float
>
,
float
>
pool2d_forward
;
pool2d_forward
(
input
,
input_shape
,
output_shape
,
ksize
,
strides_
,
paddings
,
true
,
adaptive_
,
output
,
stream
,
pool_process
);
exclusive_
,
adaptive_
,
output
,
stream
,
pool_process
);
}
return
cudaGetLastError
()
!=
cudaSuccess
;
...
...
paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h
浏览文件 @
cf8a5573
...
...
@@ -29,26 +29,32 @@ static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
const
bool
&
adaptive
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
)
{
const
std
::
vector
<
int
>&
real_
paddings
)
{
std
::
vector
<
int
>
output_shape
=
input_shape
;
if
(
adaptive
)
{
output_shape
[
0
]
=
ksize
[
0
];
output_shape
[
1
]
=
ksize
[
1
];
}
else
{
int
output_h
,
output_w
;
if
(
!
ceil_mode
)
{
output_h
=
(
input_shape
[
0
]
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
;
output_w
=
(
input_shape
[
1
]
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
;
}
else
{
output_h
=
(
input_shape
[
0
]
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
;
output_w
=
(
input_shape
[
1
]
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
;
int
output_h
=
0
,
output_w
=
0
;
if
(
ceil_mode
)
{
output_h
=
(
input_shape
[
0
]
-
ksize
[
0
]
+
real_paddings
[
0
]
+
real_paddings
[
1
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
;
output_w
=
(
input_shape
[
1
]
-
ksize
[
1
]
+
real_paddings
[
2
]
+
real_paddings
[
3
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
;
}
// TRT will use native layer when ceil_model=false
/*
else{
output_h = (input_shape[0] - ksize[0] + real_paddings[0] +
real_paddings[1]) / strides[0] + 1;
output_w = (input_shape[1] - ksize[1] + real_paddings[2] +
real_paddings[3]) / strides[1] + 1;
}
*/
output_shape
[
0
]
=
output_h
;
output_shape
[
1
]
=
output_w
;
}
...
...
@@ -57,47 +63,32 @@ static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
class
PoolPlugin
:
public
PluginTensorRT
{
public:
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
{
return
getBaseSerializationSize
()
+
SerializedSize
(
ceil_mode_
)
+
SerializedSize
(
pool_type_
)
+
SerializedSize
(
adaptive_
)
+
SerializedSize
(
ksize_
)
+
SerializedSize
(
strides_
)
+
SerializedSize
(
paddings_
)
+
SerializedSize
(
input_shape_
)
+
SerializedSize
(
output_shape_
);
}
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
;
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
{
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
ceil_mode_
);
SerializeValue
(
&
buffer
,
pool_type_
);
SerializeValue
(
&
buffer
,
adaptive_
);
SerializeValue
(
&
buffer
,
ksize_
);
SerializeValue
(
&
buffer
,
strides_
);
SerializeValue
(
&
buffer
,
paddings_
);
SerializeValue
(
&
buffer
,
input_shape_
);
SerializeValue
(
&
buffer
,
output_shape_
);
}
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
;
enum
class
PoolType
{
max
=
0
,
avg
,
};
PoolPlugin
()
{}
PoolPlugin
(
bool
ceil_mode
,
PoolType
pool_type
,
bool
adaptive
,
PoolPlugin
(
bool
ceil_mode
,
PoolType
pool_type
,
bool
adaptive
,
bool
exclusive
,
std
::
vector
<
int
>
ksize
,
std
::
vector
<
int
>
strides
,
std
::
vector
<
int
>
paddings
,
std
::
vector
<
int
>
input_shape
)
std
::
vector
<
int
>
paddings
,
std
::
vector
<
int
>
input_shape
,
std
::
vector
<
int
>
real_paddings
)
:
ceil_mode_
(
ceil_mode
),
pool_type_
(
pool_type
),
adaptive_
(
adaptive
),
exclusive_
(
exclusive
),
ksize_
(
ksize
),
strides_
(
strides
),
paddings_
(
paddings
),
real_paddings_
(
real_paddings
),
input_shape_
(
input_shape
)
{
output_shape_
=
input_shape_
;
std
::
vector
<
int
>
output_shape
=
CalcOutputSize
({
input_shape_
[
1
],
input_shape_
[
2
]},
ceil_mode_
,
adaptive_
,
ksize_
,
strides_
,
paddings_
);
adaptive_
,
ksize_
,
strides_
,
real_
paddings_
);
output_shape_
[
1
]
=
output_shape
[
0
];
output_shape_
[
2
]
=
output_shape
[
1
];
}
...
...
@@ -109,17 +100,16 @@ class PoolPlugin : public PluginTensorRT {
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
ceil_mode_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
pool_type_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
adaptive_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
exclusive_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
ksize_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
strides_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
paddings_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
real_paddings_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
input_shape_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
output_shape_
);
}
PoolPlugin
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
PoolPlugin
(
ceil_mode_
,
pool_type_
,
adaptive_
,
ksize_
,
strides_
,
paddings_
,
input_shape_
);
}
PoolPlugin
*
clone
()
const
TRT_NOEXCEPT
override
;
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"pool_plugin"
;
...
...
@@ -139,9 +129,11 @@ class PoolPlugin : public PluginTensorRT {
bool
ceil_mode_
;
PoolType
pool_type_
;
bool
adaptive_
;
bool
exclusive_
;
std
::
vector
<
int
>
ksize_
;
std
::
vector
<
int
>
strides_
;
std
::
vector
<
int
>
paddings_
;
std
::
vector
<
int
>
real_paddings_
;
std
::
vector
<
int
>
input_shape_
;
std
::
vector
<
int
>
output_shape_
;
};
...
...
@@ -167,12 +159,14 @@ class PoolPluginDynamic : public DynamicPluginTensorRT {
public:
PoolPluginDynamic
()
{}
PoolPluginDynamic
(
const
bool
&
ceil_mode
,
const
std
::
string
&
pool_type
,
const
bool
&
adaptive
,
const
std
::
vector
<
int
>&
ksize
,
const
bool
&
adaptive
,
bool
exclusive
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
bool
&
is_global
)
:
ceil_mode_
(
ceil_mode
),
pool_type_
(
pool_type
),
adaptive_
(
adaptive
),
exclusive_
(
exclusive
),
ksize_
(
ksize
),
strides_
(
strides
),
paddings_
(
paddings
),
...
...
@@ -180,10 +174,7 @@ class PoolPluginDynamic : public DynamicPluginTensorRT {
PoolPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
);
~
PoolPluginDynamic
()
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
PoolPluginDynamic
(
ceil_mode_
,
pool_type_
,
adaptive_
,
ksize_
,
strides_
,
paddings_
,
is_global_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
;
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"pool_plugin_dynamic"
;
...
...
@@ -229,6 +220,7 @@ class PoolPluginDynamic : public DynamicPluginTensorRT {
bool
ceil_mode_
;
std
::
string
pool_type_
;
bool
adaptive_
;
bool
exclusive_
;
std
::
vector
<
int
>
ksize_
;
std
::
vector
<
int
>
strides_
;
std
::
vector
<
int
>
paddings_
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_pool2d.py
浏览文件 @
cf8a5573
...
...
@@ -52,7 +52,7 @@ class TrtConvertPool2dTest(TrtLayerAutoScanTest):
return
np
.
random
.
random
([
24
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
for
strides
in
[[
1
,
1
],
[
1
,
2
],
[
2
,
2
]]:
for
paddings
in
[[
0
,
2
],
[
0
,
3
]
,
[
0
,
1
,
2
,
3
]
]:
for
paddings
in
[[
0
,
2
],
[
0
,
3
]]:
for
pooling_type
in
[
'max'
,
'avg'
]:
for
padding_algotithm
in
[
'EXPLICIT'
,
'SAME'
,
'VAILD'
]:
for
ksize
in
[[
2
,
3
],
[
3
,
3
]]:
...
...
@@ -145,44 +145,18 @@ class TrtConvertPool2dTest(TrtLayerAutoScanTest):
True
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
program_config
.
ops
[
0
].
attrs
[
'paddings'
])
==
4
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"4-dims paddings are not support for trt now."
)
def
teller2
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'global_pooling'
]
==
True
:
return
True
return
False
self
.
add_skip_case
(
teller2
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"It is not support that global_pooling is true for trt now."
)
def
teller3
(
program_config
,
predictor_config
):
if
self
.
dynamic_shape
.
min_input_shape
==
{}
and
program_config
.
ops
[
0
].
attrs
[
'ceil_mode'
]
==
True
:
return
True
return
False
self
.
add_skip_case
(
teller3
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"It is not support that ceil_mode is true in static mode for trt now."
)
def
teller4
(
program_config
,
predictor_config
):
if
self
.
dynamic_shape
.
min_input_shape
!=
{}
and
(
program_config
.
ops
[
0
].
attrs
[
'strides'
]
==
[
1
,
2
]
or
program_config
.
ops
[
0
].
attrs
[
'strides'
]
==
[
2
,
2
]):
def
teller
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'pooling_type'
]
==
'avg'
and
\
program_config
.
ops
[
0
].
attrs
[
'global_pooling'
]
==
False
and
\
program_config
.
ops
[
0
].
attrs
[
'exclusive'
]
==
True
and
\
program_config
.
ops
[
0
].
attrs
[
'adaptive'
]
==
False
and
\
program_config
.
ops
[
0
].
attrs
[
'ceil_mode'
]
==
True
:
return
True
return
False
self
.
add_skip_case
(
teller
4
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"
It is not support that strides is not equal [1, 1] in dynamic mode for trt now
."
teller
,
SkipReasons
.
TRT_NOT_IMPLEMENTED
,
"
The results of some cases are Nan, but the results of TensorRT and GPU are the same
."
)
def
test
(
self
):
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_pool_op.py
浏览文件 @
cf8a5573
...
...
@@ -119,6 +119,17 @@ class TensorRTAvgPoolTest(TensorRTPoolTest):
self
.
exclusive
=
False
class
TensorRTAvgCeilPoolTest
(
TensorRTPoolTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
self
.
pool_type
=
'avg'
self
.
pool_stride
=
1
self
.
pool_padding
=
0
self
.
global_pooling
=
False
self
.
ceil_mode
=
True
self
.
exclusive
=
False
class
TensorRTGlobalPoolTest
(
TensorRTPoolTest
):
def
set_extra_config
(
self
):
self
.
pool_size
=
2
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录