Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
cf5b5986
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cf5b5986
编写于
11月 24, 2017
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix some issues
上级
ef905598
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
37 addition
and
36 deletion
+37
-36
paddle/operators/roi_pool_op.cc
paddle/operators/roi_pool_op.cc
+11
-2
paddle/operators/roi_pool_op.cu
paddle/operators/roi_pool_op.cu
+8
-12
paddle/operators/roi_pool_op.h
paddle/operators/roi_pool_op.h
+12
-21
python/paddle/v2/fluid/tests/test_roi_pool_op.py
python/paddle/v2/fluid/tests/test_roi_pool_op.py
+6
-1
未找到文件。
paddle/operators/roi_pool_op.cc
浏览文件 @
cf5b5986
...
@@ -17,6 +17,10 @@ limitations under the License. */
...
@@ -17,6 +17,10 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
static
constexpr
int
kROISize
=
5
;
class
ROIPoolOp
:
public
framework
::
OperatorWithKernel
{
class
ROIPoolOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
@@ -38,6 +42,9 @@ class ROIPoolOp : public framework::OperatorWithKernel {
...
@@ -38,6 +42,9 @@ class ROIPoolOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
"given as [[batch_id, x1, y1, x2, y2], …]."
);
"given as [[batch_id, x1, y1, x2, y2], …]."
);
PADDLE_ENFORCE
(
rois_dims
[
1
]
==
kROISize
,
"ROIs should be a 2-D tensor of shape (num_rois, 5)"
"given as [[batch_id, x1, y1, x2, y2], …]."
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
...
@@ -150,7 +157,9 @@ REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker,
...
@@ -150,7 +157,9 @@ REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker,
roi_pool_grad
,
ops
::
ROIPoolGradOp
);
roi_pool_grad
,
ops
::
ROIPoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
roi_pool
,
roi_pool
,
ops
::
CPUROIPoolOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
CPUROIPoolOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
CPUROIPoolOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
roi_pool_grad
,
roi_pool_grad
,
ops
::
CPUROIPoolGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
CPUROIPoolGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
CPUROIPoolOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/roi_pool_op.cu
浏览文件 @
cf5b5986
...
@@ -18,6 +18,8 @@ limitations under the License. */
...
@@ -18,6 +18,8 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumMaxinumNumBlocks
=
4096
;
static
constexpr
int
kNumMaxinumNumBlocks
=
4096
;
static
constexpr
int
kROISize
=
5
;
static
constexpr
int
kROISize
=
5
;
...
@@ -25,7 +27,7 @@ static constexpr int kROISize = 5;
...
@@ -25,7 +27,7 @@ static constexpr int kROISize = 5;
static
inline
int
NumBlocks
(
const
int
N
)
{
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaxinumNumBlocks
);
kNumMaxinumNumBlocks
);
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
GPUROIPoolForward
(
__global__
void
GPUROIPoolForward
(
...
@@ -64,7 +66,7 @@ static inline int NumBlocks(const int N) {
...
@@ -64,7 +66,7 @@ static inline int NumBlocks(const int N) {
wend
=
min
(
max
(
wend
+
roi_start_w
,
0
),
width
);
wend
=
min
(
max
(
wend
+
roi_start_w
,
0
),
width
);
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
T
maxval
=
is_empty
?
0
:
-
std
::
numeric_limits
<
float
>::
max
();
T
maxval
=
is_empty
?
0
:
-
std
::
numeric_limits
<
T
>::
max
();
int
maxidx
=
-
1
;
int
maxidx
=
-
1
;
const
T
*
offset_input_data
=
const
T
*
offset_input_data
=
input_data
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
input_data
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
...
@@ -143,14 +145,6 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -143,14 +145,6 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
int
width
=
in_dims
[
3
];
int
width
=
in_dims
[
3
];
size_t
rois_num
=
rois
->
dims
()[
0
];
size_t
rois_num
=
rois
->
dims
()[
0
];
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
out
,
static_cast
<
T
>
(
0
));
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
int64_t
>
set_init
;
set_init
(
ctx
.
device_context
(),
argmax
,
static_cast
<
int64_t
>
(
-
1
));
if
(
rois_num
==
0
)
return
;
if
(
rois_num
==
0
)
return
;
int
output_size
=
out
->
numel
();
int
output_size
=
out
->
numel
();
...
@@ -230,7 +224,9 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
...
@@ -230,7 +224,9 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
roi_pool
,
roi_pool
,
ops
::
GPUROIPoolOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GPUROIPoolOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GPUROIPoolOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
roi_pool_grad
,
roi_pool_grad
,
ops
::
GPUROIPoolGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GPUROIPoolGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GPUROIPoolOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/roi_pool_op.h
浏览文件 @
cf5b5986
...
@@ -15,23 +15,18 @@ limitations under the License. */
...
@@ -15,23 +15,18 @@ limitations under the License. */
#pragma once
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/strided_memcpy.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoD
=
framework
::
LoD
;
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
CPUROIPoolOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CPUROIPoolOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
Tensor
>
(
"ROIs"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
argmax
=
ctx
.
Output
<
Tensor
>
(
"Argmax"
);
auto
*
argmax
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Argmax"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
...
@@ -54,11 +49,6 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -54,11 +49,6 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
*
argmax_data
=
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
int64_t
*
argmax_data
=
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
out
,
static_cast
<
T
>
(
0
));
math
::
SetConstant
<
Place
,
int64_t
>
set_init
;
set_init
(
ctx
.
device_context
(),
argmax
,
static_cast
<
int64_t
>
(
-
1
));
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_id
=
rois_data
[
0
];
int
roi_batch_id
=
rois_data
[
0
];
PADDLE_ENFORCE_GE
(
roi_batch_id
,
0
);
PADDLE_ENFORCE_GE
(
roi_batch_id
,
0
);
...
@@ -83,7 +73,7 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -83,7 +73,7 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
const
float
bin_size_w
=
const
float
bin_size_w
=
static_cast
<
float
>
(
roi_width
)
/
static_cast
<
float
>
(
pooled_width
);
static_cast
<
float
>
(
roi_width
)
/
static_cast
<
float
>
(
pooled_width
);
const
float
*
batch_data
=
input_data
+
roi_batch_id
*
in_stride
[
0
];
const
T
*
batch_data
=
input_data
+
roi_batch_id
*
in_stride
[
0
];
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
...
@@ -110,7 +100,8 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -110,7 +100,8 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
// Define an empty pooling region to be zero
// Define an empty pooling region to be zero
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
output_data
[
pool_index
]
=
output_data
[
pool_index
]
=
is_empty
?
0
:
-
std
::
numeric_limits
<
float
>::
max
();
is_empty
?
0
:
-
std
::
numeric_limits
<
T
>::
max
();
argmax_data
[
pool_index
]
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
@@ -139,14 +130,14 @@ template <typename Place, typename T>
...
@@ -139,14 +130,14 @@ template <typename Place, typename T>
class
CPUROIPoolGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CPUROIPoolGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
Tensor
>
(
"ROIs"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ROIs"
);
auto
*
argmax
=
ctx
.
Input
<
Tensor
>
(
"Argmax"
);
auto
*
argmax
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Argmax"
);
auto
*
out_grad
=
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
...
...
python/paddle/v2/fluid/tests/test_roi_pool_op.py
浏览文件 @
cf5b5986
...
@@ -77,7 +77,12 @@ class TestROIPoolOp(OpTest):
...
@@ -77,7 +77,12 @@ class TestROIPoolOp(OpTest):
wstart
=
min
(
max
(
wstart
+
roi_start_w
,
0
),
self
.
width
)
wstart
=
min
(
max
(
wstart
+
roi_start_w
,
0
),
self
.
width
)
wend
=
min
(
max
(
wend
+
roi_start_w
,
0
),
self
.
width
)
wend
=
min
(
max
(
wend
+
roi_start_w
,
0
),
self
.
width
)
out_data
[
i
,
c
,
ph
,
pw
]
=
0
is_empty
=
(
hend
<=
hstart
)
or
(
wend
<=
wstart
)
if
is_empty
:
out_data
[
i
,
c
,
ph
,
pw
]
=
0
else
:
out_data
[
i
,
c
,
ph
,
pw
]
=
-
sys
.
float_info
.
max
argmax_data
[
i
,
c
,
ph
,
pw
]
=
-
1
argmax_data
[
i
,
c
,
ph
,
pw
]
=
-
1
for
h
in
range
(
hstart
,
hend
):
for
h
in
range
(
hstart
,
hend
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录