未验证 提交 cf128231 编写于 作者: W whs 提交者: GitHub

Add truncated gaussian initializer. (#13000)

* Add truncated gaussian initializer.

* Fix unitest.

* Update API.spec

* Fix code style and fix bug.

* Fix code style.

* Small fix.
上级 642cf6ca
...@@ -32,6 +32,15 @@ Normal ...@@ -32,6 +32,15 @@ Normal
:members: :members:
:noindex: :noindex:
.. _api_fluid_initializer_Normal:
TruncatedNormal
------
.. autoclass:: paddle.fluid.initializer.TruncatedNormal
:members:
:noindex:
.. _api_fluid_initializer_Xavier: .. _api_fluid_initializer_Xavier:
Xavier Xavier
......
...@@ -79,6 +79,7 @@ paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program ...@@ -79,6 +79,7 @@ paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)) paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0)) paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0))
paddle.fluid.initializer.NormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)) paddle.fluid.initializer.NormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0))
paddle.fluid.initializer.TruncatedNormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0))
paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0)) paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0))
paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)) paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0))
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <limits>
#include <random>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
template <typename T>
T Erfinv(T x) {
if (x < -1 || x > 1) {
return std::numeric_limits<T>::quiet_NaN();
} else if (x == 1.0) {
return std::numeric_limits<T>::infinity();
} else if (x == -1.0) {
return -std::numeric_limits<T>::infinity();
}
const T LN2 = 6.931471805599453094172321214581e-1;
const T A0 = 1.1975323115670912564578e0;
const T A1 = 4.7072688112383978012285e1;
const T A2 = 6.9706266534389598238465e2;
const T A3 = 4.8548868893843886794648e3;
const T A4 = 1.6235862515167575384252e4;
const T A5 = 2.3782041382114385731252e4;
const T A6 = 1.1819493347062294404278e4;
const T A7 = 8.8709406962545514830200e2;
const T B0 = 1.0000000000000000000e0;
const T B1 = 4.2313330701600911252e1;
const T B2 = 6.8718700749205790830e2;
const T B3 = 5.3941960214247511077e3;
const T B4 = 2.1213794301586595867e4;
const T B5 = 3.9307895800092710610e4;
const T B6 = 2.8729085735721942674e4;
const T B7 = 5.2264952788528545610e3;
const T C0 = 1.42343711074968357734e0;
const T C1 = 4.63033784615654529590e0;
const T C2 = 5.76949722146069140550e0;
const T C3 = 3.64784832476320460504e0;
const T C4 = 1.27045825245236838258e0;
const T C5 = 2.41780725177450611770e-1;
const T C6 = 2.27238449892691845833e-2;
const T C7 = 7.74545014278341407640e-4;
const T D0 = 1.4142135623730950488016887e0;
const T D1 = 2.9036514445419946173133295e0;
const T D2 = 2.3707661626024532365971225e0;
const T D3 = 9.7547832001787427186894837e-1;
const T D4 = 2.0945065210512749128288442e-1;
const T D5 = 2.1494160384252876777097297e-2;
const T D6 = 7.7441459065157709165577218e-4;
const T D7 = 1.4859850019840355905497876e-9;
const T E0 = 6.65790464350110377720e0;
const T E1 = 5.46378491116411436990e0;
const T E2 = 1.78482653991729133580e0;
const T E3 = 2.96560571828504891230e-1;
const T E4 = 2.65321895265761230930e-2;
const T E5 = 1.24266094738807843860e-3;
const T E6 = 2.71155556874348757815e-5;
const T E7 = 2.01033439929228813265e-7;
const T F0 = 1.414213562373095048801689e0;
const T F1 = 8.482908416595164588112026e-1;
const T F2 = 1.936480946950659106176712e-1;
const T F3 = 2.103693768272068968719679e-2;
const T F4 = 1.112800997078859844711555e-3;
const T F5 = 2.611088405080593625138020e-5;
const T F6 = 2.010321207683943062279931e-7;
const T F7 = 2.891024605872965461538222e-15;
T abs_x = abs(x);
if (abs_x <= 0.85) {
T r = 0.180625 - 0.25 * x * x;
T num =
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
r +
A0);
T den =
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
r +
B0);
return x * num / den;
}
T r = sqrt(LN2 - log(1.0 - abs_x));
T num, den;
if (r <= 5.0) {
r = r - 1.6;
num =
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
r +
C0);
den =
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
r +
D0);
} else {
r = r - 5.0;
num =
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
r +
E0);
den =
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
r +
F0);
}
if (x < 0) {
return -num / den;
} else {
return num / den;
}
}
template <typename T>
struct TruncatedNormal {
T mean, std;
T a_normal_cdf;
T b_normal_cdf;
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
auto normal_cdf = [](T x) {
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
};
a_normal_cdf = normal_cdf(-2.0);
b_normal_cdf = normal_cdf(2.0);
}
T operator()(T value) const {
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return (std::sqrt(2.0) * Erfinv(2 * p - 1) + mean) * std;
}
};
template <typename T>
class CPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
1.0);
TruncatedNormal<T> truncated_normal(mean, std);
int64_t size = tensor->numel();
for (int64_t i = 0; i < size; ++i) {
data[i] = truncated_normal(dist(engine));
}
}
};
class TruncatedGaussianRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(
ctx->HasOutput("Out"),
"Output(Out) of TruncatedGaussianRandomOp should not be null.");
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
std::vector<int64_t> out_dim;
out_dim.reserve(shape.size());
for (auto dim : shape) {
out_dim.push_back(static_cast<int64_t>(dim));
}
PADDLE_ENFORCE(shape.size() > 0UL,
"shape can be one int or array. shape must be set.");
ctx->SetOutputDim("Out", framework::make_ddim(out_dim));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library{framework::LibraryType::kPlain};
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
ctx.device_context(), layout, library);
}
};
class TruncatedGaussianRandomOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddOutput("Out", "Output tensor of truncated gaussian random op.");
AddAttr<std::vector<int>>("shape",
"(vector<int>) "
"The dimension of random tensor.");
AddAttr<float>("mean",
"(float, default 0.0) "
"mean of random tensor.")
.SetDefault(.0f);
AddAttr<float>("std",
"(float, default 1.0) "
"std of random tensor.")
.SetDefault(1.0f);
AddAttr<int>("seed",
"(int, default 0) "
"Random seed of generator."
"0 means use system wide seed."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time.")
.SetDefault(0);
AddAttr<int>("dtype",
"(int, default 5(FP32)) "
"Output data type.")
.SetDefault(framework::proto::VarType::FP32);
AddComment(R"DOC(
TruncatedGaussianRandom Operator.
Used to initialize tensors with truncated gaussian random generator.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(truncated_gaussian_random,
ops::TruncatedGaussianRandomOp,
ops::TruncatedGaussianRandomOpMaker);
REGISTER_OP_CPU_KERNEL(truncated_gaussian_random,
ops::CPUTruncatedGaussianRandomKernel<float>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/random.h>
#include <thrust/transform.h>
#include <limits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace operators {
template <typename T>
struct TruncatedNormal {
T mean, std;
T a_normal_cdf;
T b_normal_cdf;
unsigned int seed;
T numeric_min;
__host__ __device__ TruncatedNormal(T mean, T std, T numeric_min, int seed)
: mean(mean), std(std), seed(seed), numeric_min(numeric_min) {
a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0;
b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0;
}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed);
thrust::uniform_real_distribution<T> dist(numeric_min, 1);
rng.discard(n);
T value = dist(rng);
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return (std::sqrt(2.0) * erfinvf(2 * p - 1) + mean) * std;
}
};
template <typename T>
class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
if (seed == 0) {
std::random_device rd;
seed = rd();
}
T mean = static_cast<T>(context.Attr<float>("mean"));
T std = static_cast<T>(context.Attr<float>("std"));
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
int64_t size = tensor->numel();
thrust::transform(
index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(data),
TruncatedNormal<T>(mean, std, std::numeric_limits<T>::min(), seed));
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(
truncated_gaussian_random,
paddle::operators::GPUTruncatedGaussianRandomKernel<float>);
...@@ -20,10 +20,10 @@ import contextlib ...@@ -20,10 +20,10 @@ import contextlib
from .core import VarDesc from .core import VarDesc
__all__ = [ __all__ = [
'Constant', 'Uniform', 'Normal', 'Xavier', 'Bilinear', 'MSRA', 'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer', 'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
'UniformInitializer', 'NormalInitializer', 'XavierInitializer', 'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
'BilinearInitializer', 'MSRAInitializer' 'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer'
] ]
_force_init_on_cpu_ = False _force_init_on_cpu_ = False
...@@ -33,6 +33,8 @@ def force_init_on_cpu(): ...@@ -33,6 +33,8 @@ def force_init_on_cpu():
""" """
The flag of whether force to init variables on CPU. The flag of whether force to init variables on CPU.
Returns::
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -272,6 +274,60 @@ class NormalInitializer(Initializer): ...@@ -272,6 +274,60 @@ class NormalInitializer(Initializer):
return op return op
class TruncatedNormalInitializer(Initializer):
"""Implements the Random TruncatedNormal(Gaussian) distribution initializer
Args:
loc (float): mean of the normal distribution
scale (float): standard deviation of the normal distribution
seed (int): random seed
Examples:
.. code-block:: python
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
"""
def __init__(self, loc=0.0, scale=1.0, seed=0):
assert loc is not None
assert scale is not None
assert seed is not None
super(NormalInitializer, self).__init__()
self._mean = loc
self._std_dev = scale
self._seed = seed
def __call__(self, var, block):
"""Add truncated normal distribution initialization ops for a variable
Args:
var: Variable that needs to be initialized
block: The block in which initialization ops
should be added
Returns:
the initialization op
"""
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
# Initialization Ops should be prepended and not appended
if self._seed == 0:
self._seed = block.program.random_seed
op = block._prepend_op(
type="truncated_gaussian_random",
outputs={"Out": var},
attrs={
"shape": var.shape,
"dtype": int(var.dtype),
"mean": self._mean,
"std": self._std_dev,
"seed": self._seed
})
var.op = op
return op
class XavierInitializer(Initializer): class XavierInitializer(Initializer):
""" """
This class implements the Xavier weight initializer from the paper This class implements the Xavier weight initializer from the paper
...@@ -583,6 +639,7 @@ class BilinearInitializer(Initializer): ...@@ -583,6 +639,7 @@ class BilinearInitializer(Initializer):
Constant = ConstantInitializer Constant = ConstantInitializer
Uniform = UniformInitializer Uniform = UniformInitializer
Normal = NormalInitializer Normal = NormalInitializer
TruncatedNormal = TruncatedNormalInitializer
Xavier = XavierInitializer Xavier = XavierInitializer
MSRA = MSRAInitializer MSRA = MSRAInitializer
Bilinear = BilinearInitializer Bilinear = BilinearInitializer
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
class TestTrunctedGaussianRandomOp(unittest.TestCase):
def setUp(self):
self.op_type = "truncated_gaussian_random"
self.inputs = {}
self.attrs = {
"shape": [10000],
"mean": .0,
"std": 1.,
"seed": 10,
}
self.outputs = ["Out"]
def test_cpu(self):
self.gaussian_random_test(place=fluid.CPUPlace())
def test_gpu(self):
if core.is_compiled_with_cuda():
self.gaussian_random_test(place=fluid.CUDAPlace(0))
def gaussian_random_test(self, place):
program = fluid.Program()
block = program.global_block()
vout = block.create_var(name="Out")
op = block.append_op(
type=self.op_type, outputs={"Out": vout}, attrs=self.attrs)
op.desc.infer_var_type(block.desc)
op.desc.infer_shape(block.desc)
fetch_list = []
for var_name in self.outputs:
fetch_list.append(block.var(var_name))
exe = Executor(place)
outs = exe.run(program, fetch_list=fetch_list)
tensor = outs[0]
self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
self.assertAlmostEqual(numpy.var(tensor), 0.773, delta=0.1)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册