提交 cc0b8053 编写于 作者: G guosheng

Refine the guide of RNN in docs

上级 a9b9ec45
RNN模型 RNN模型
=========== ===========
循环神经网络(RNN)是对序列数据建模的重要工具。PaddlePaddle提供了灵活的接口以支持复杂循环神经网络的构建。
这一部分将分以下章节详细介绍如何使用PaddlePaddle搭建循环神经网络。
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
rnn_config_cn.rst rnn_config_cn.rst
本章节由浅入深的展示了使用PaddlePaddle搭建循环神经网络的全貌:首先以简单的循环神经网络(vanilla RNN)为例,
说明如何封装配置循环神经网络组件;然后更进一步的通过sequence to sequence模型,逐步讲解如何构建完整而复杂的循环神经网络模型。
.. toctree::
:maxdepth: 1
recurrent_group_cn.md recurrent_group_cn.md
Recurrent Group是PaddlePaddle中实现复杂循环神经网络的关键,本章节阐述了PaddlePaddle中Recurrent Group的相关概念和原理,
对Recurrent Group接口进行了详细说明。另外,对双层RNN(对应的输入为双层序列)及Recurrent Group在其中的使用进行了介绍。
.. toctree::
:maxdepth: 1
hierarchical_layer_cn.rst hierarchical_layer_cn.rst
本章节对双层序列进行了解释说明,列出了PaddlePaddle中支持双层序列作为输入的Layer并对其使用进行了逐一介绍。
.. toctree::
:maxdepth: 1
hrnn_rnn_api_compare_cn.rst hrnn_rnn_api_compare_cn.rst
本章节以PaddlePaddle的双层RNN单元测试中的网络配置为示例,辅以效果相同的单层RNN网络配置作为对比,讲解了多种情况下双层RNN的使用。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册