提交 ca392c7e 编写于 作者: M minqiyang

Implement infer var type context

上级 0b49e43d
......@@ -68,11 +68,11 @@ class SplitOpMaker : public OpProtoAndCheckerMaker {
class DummyVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc& op_desc, BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
auto type = block->Var(inputs.front())->GetType();
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(type);
void operator()(framework::InferVarTypeContext& ctx) const override {
auto& inputs = ctx.Input("X");
auto type = ctx.GetType(inputs.front());
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, type);
}
};
......
......@@ -127,9 +127,9 @@ struct OpInfoFiller<T, kGradOpDescMaker> {
template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) {
info->infer_var_type_ = [](InferVarTypeContext& context) {
T inference;
inference(fwd_op, block);
inference(context);
};
}
};
......
......@@ -43,20 +43,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class SumOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {
auto &inputs = op_desc.Input("X");
void operator()(InferVarTypeContext &ctx) const override {
auto &inputs = ctx.Input("X");
auto default_var_type = proto::VarType::SELECTED_ROWS;
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [block](const std::string &name) {
return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR;
inputs.begin(), inputs.end(), [ctx](const std::string &name) {
return ctx.GetType(name) == proto::VarType::LOD_TENSOR;
});
if (any_input_is_lod_tensor) {
default_var_type = proto::VarType::LOD_TENSOR;
}
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(default_var_type);
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, default_var_type);
}
};
......@@ -71,7 +71,7 @@ class DummyOpMaker : public OpProtoAndCheckerMaker {
class DummyOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace framework
} // namespace paddle
......
......@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace framework {
......@@ -677,7 +678,8 @@ void OpDesc::InferVarType(BlockDesc *block) const {
// var type inference. Hence, we don't do any "default" setting here.
auto &info = OpInfoMap::Instance().Get(this->Type());
if (info.infer_var_type_) {
info.infer_var_type_(*this, block);
InferVarTypeContext context(this, block);
info.infer_var_type_(context);
}
}
......
......@@ -27,6 +27,7 @@ namespace framework {
class OperatorBase;
class OpDesc;
class InferShapeContext;
class InferVarTypeContext;
class BlockDesc;
class Variable;
......@@ -53,7 +54,7 @@ using GradOpMakerFN = std::function<std::vector<std::unique_ptr<OpDesc>>(
const std::vector<BlockDesc*>& grad_block)>;
using InferVarTypeFN =
std::function<void(const OpDesc& /*op_desc*/, BlockDesc* /*block*/)>;
std::function<void(framework::InferVarTypeContext& /*context*/)>;
using InferShapeFN = std::function<void(InferShapeContext*)>;
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/type_defs.h"
......@@ -21,26 +22,113 @@ limitations under the License. */
namespace paddle {
namespace framework {
class OpDesc;
class BlockDesc;
// default infer var type context
class InferVarTypeContext {
public:
InferVarTypeContext(const OpDesc* op, BlockDesc* block)
: op_(op), block_(block) {}
Attribute GetAttr(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->GetAttr(name);
}
inline bool HasVar(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindVarRecursive(name) != nullptr;
}
inline bool HasInput(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Inputs().count(name) > 0;
}
inline bool HasOutput(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Outputs().count(name) > 0;
}
inline const std::vector<std::string>& Input(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Input(name);
}
inline const std::vector<std::string>& Output(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Output(name);
}
inline proto::VarType::Type GetType(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetType();
}
inline void SetType(const std::string& name, proto::VarType::Type type) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetType(type);
}
inline proto::VarType::Type GetDataType(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetDataType();
}
inline void SetDataType(const std::string& name, proto::VarType::Type type) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetDataType(type);
}
inline std::vector<int64_t> GetShape(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetShape();
}
inline void SetShape(const std::string& name,
const std::vector<int64_t>& dims) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetShape(dims);
}
inline int32_t GetLoDLevel(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetLoDLevel();
}
inline void SetLoDLevel(const std::string& name, int32_t lod_level) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetLoDLevel(lod_level);
}
private:
const OpDesc* op_;
BlockDesc* block_;
};
// infer var type context for imperative mode
class RuntimeInferVarTypeContext : public InferVarTypeContext {
public:
RuntimeInferVarTypeContext() : InferVarTypeContext(nullptr, nullptr) {}
};
class VarTypeInference {
public:
virtual ~VarTypeInference() {}
virtual void operator()(const OpDesc& op_desc, BlockDesc* block) const = 0;
virtual void operator()(InferVarTypeContext& context) const = 0; // NOLINT
};
class PassInDtypeAndVarTypeToOutput : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const final {
void operator()(framework::InferVarTypeContext& ctx) const final { // NOLINT
auto in_out_var_names = this->GetInputOutputWithSameType();
for (auto& i_o_n : in_out_var_names) {
auto& x_name = op_desc.Input(i_o_n.first).at(0);
auto& out_name = op_desc.Output(i_o_n.second).at(0);
auto& x_name = ctx.Input(i_o_n.first).at(0);
auto& out_name = ctx.Output(i_o_n.second).at(0);
auto& x = block->FindRecursiveOrCreateVar(x_name);
auto& out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(x.GetType());
out.SetDataType(x.GetDataType());
ctx.SetType(out_name, ctx.GetType(x_name));
ctx.SetDataType(out_name, ctx.GetDataType(x_name));
}
}
......
......@@ -44,20 +44,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class SumOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {
auto &inputs = op_desc.Input("X");
void operator()(framework::InferVarTypeContext &ctx) const override {
auto &inputs = ctx.Input("X");
auto default_var_type = proto::VarType::SELECTED_ROWS;
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [block](const std::string &name) {
return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR;
inputs.begin(), inputs.end(), [ctx](const std::string &name) {
return ctx.GetType(name) == proto::VarType::LOD_TENSOR;
});
if (any_input_is_lod_tensor) {
default_var_type = proto::VarType::LOD_TENSOR;
}
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(default_var_type);
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, default_var_type);
}
};
} // namespace framework
......
......@@ -178,10 +178,10 @@ Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
hypothesis has.
)DOC");
}
......@@ -203,15 +203,12 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase {
class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
for (auto& o : op_desc.Output("SentenceIds")) {
auto& sentence_ids = block->FindRecursiveOrCreateVar(o);
sentence_ids.SetType(framework::proto::VarType::LOD_TENSOR);
void operator()(framework::InferVarTypeContext& ctx) const override {
for (auto& o : ctx.Output("SentenceIds")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
for (auto& o : op_desc.Output("SentenceScores")) {
auto& sentence_scores = block->FindRecursiveOrCreateVar(o);
sentence_scores.SetType(framework::proto::VarType::LOD_TENSOR);
for (auto& o : ctx.Output("SentenceScores")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
}
};
......
......@@ -65,7 +65,7 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault(true);
AddComment(R"DOC(
This operator does the search in beams for one time step.
This operator does the search in beams for one time step.
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
......@@ -120,15 +120,12 @@ class BeamSearchOp : public framework::OperatorWithKernel {
class BeamSearchInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &o : op_desc.Output("selected_ids")) {
auto &selected_ids = block->FindRecursiveOrCreateVar(o);
selected_ids.SetType(framework::proto::VarType::LOD_TENSOR);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &o : ctx.Output("selected_ids")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
for (auto &o : op_desc.Output("selected_scores")) {
auto &selected_scores = block->FindRecursiveOrCreateVar(o);
selected_scores.SetType(framework::proto::VarType::LOD_TENSOR);
for (auto &o : ctx.Output("selected_scores")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
}
};
......
......@@ -93,11 +93,9 @@ execution.
class GetPlacesInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &o_name : op_desc.Output("Out")) {
block->FindRecursiveOrCreateVar(o_name).SetType(
framework::proto::VarType::PLACE_LIST);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &o_name : ctx.Output("Out")) {
ctx.SetType(o_name, framework::proto::VarType::PLACE_LIST);
}
}
};
......
......@@ -100,16 +100,13 @@ class WriteToArrayInferShape : public framework::InferShapeBase {
class WriteToArrayInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto x_name = op_desc.Input("X")[0];
auto out_name = op_desc.Output("Out")[0];
void operator()(framework::InferVarTypeContext &ctx) const override {
auto x_name = ctx.Input("X")[0];
auto out_name = ctx.Output("Out")[0];
VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY";
auto &out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(framework::proto::VarType::LOD_TENSOR_ARRAY);
auto *x = block->FindVarRecursive(x_name);
if (x != nullptr) {
out.SetDataType(x->GetDataType());
ctx.SetType(out_name, framework::proto::VarType::LOD_TENSOR_ARRAY);
if (ctx.HasVar(x_name)) {
ctx.SetDataType(out_name, ctx.GetDataType(x_name));
}
}
};
......
......@@ -114,11 +114,10 @@ class MergeIdsOp : public framework::OperatorWithKernel {
class MergeIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(input_var->GetType());
void operator()(framework::InferVarTypeContext &ctx) const override {
auto input_type = ctx.GetType(ctx.Input("Ids")[0]);
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, input_type);
}
}
};
......
......@@ -71,11 +71,10 @@ class SplitIdsOp : public framework::OperatorWithKernel {
class SplitIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(input_var->GetType());
void operator()(framework::InferVarTypeContext &ctx) const override {
auto input_type = ctx.GetType(ctx.Input("Ids")[0]);
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, input_type);
}
}
};
......
......@@ -39,12 +39,11 @@ class FillConstantOp : public framework::OperatorWithKernel {
class FillConstantOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
void operator()(framework::InferVarTypeContext& ctx) const override {
auto data_type = static_cast<framework::proto::VarType::Type>(
boost::get<int>(op_desc.GetAttr("dtype")));
auto& out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetDataType(data_type);
boost::get<int>(ctx.GetAttr("dtype")));
auto& out_var_name = ctx.Output("Out").front();
ctx.SetDataType(out_var_name, data_type);
}
};
......
......@@ -137,22 +137,20 @@ class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
class FusedEmbeddingSeqPoolOpGradVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto attr = op_desc.GetAttr("is_sparse");
void operator()(framework::InferVarTypeContext& ctx) const override {
auto out_var_name = ctx.Output(framework::GradVarName("W")).front();
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "fused_embedding_seq_pool_grad op "
<< framework::GradVarName("W") << " is set to SelectedRows";
block->Var(out_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "fused_embedding_seq_pool_grad op "
<< framework::GradVarName("W") << " is set to LoDTensor";
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
}
block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
ctx.SetDataType(out_var_name, ctx.GetDataType(ctx.Input("W")[0]));
}
};
......
......@@ -81,15 +81,12 @@ GetTensorFromSelectedRows is used to get the tensor from SelectedRows.
class GetTensorFromSelectedRowsOpVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const final {
auto out_var_name = op_desc.Output("Out").front();
auto in_var_name = op_desc.Input("X").front();
auto out_var = block->FindRecursiveOrCreateVar(out_var_name);
auto in_var = block->FindRecursiveOrCreateVar(in_var_name);
out_var.SetType(framework::proto::VarType::LOD_TENSOR);
out_var.SetDataType(in_var.GetDataType());
void operator()(framework::InferVarTypeContext &ctx) const { // NOLINT
auto out_var_name = ctx.Output("Out").front();
auto in_var_name = ctx.Input("X").front();
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
ctx.SetDataType(out_var_name, ctx.GetDataType(in_var_name));
}
};
......
......@@ -197,38 +197,32 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
class HierarchicalSigmoidGradOpGradVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto w_grad_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto bias_grad_var_name_vec =
op_desc.Output(framework::GradVarName("Bias"));
void operator()(framework::InferVarTypeContext& ctx) const override {
auto w_grad_var_name = ctx.Output(framework::GradVarName("W")).front();
auto bias_grad_var_name_vec = ctx.Output(framework::GradVarName("Bias"));
std::string bias_grad_var_name;
bool hasBias = false;
if (bias_grad_var_name_vec.size()) {
hasBias = true;
bias_grad_var_name =
op_desc.Output(framework::GradVarName("Bias")).front();
bias_grad_var_name = ctx.Output(framework::GradVarName("Bias")).front();
}
auto attr = op_desc.GetAttr("is_sparse");
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
<< " is set to SelectedRows";
block->Var(w_grad_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(w_grad_var_name, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
<< " is set to LoDTensor";
block->Var(w_grad_var_name)
->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(w_grad_var_name, framework::proto::VarType::LOD_TENSOR);
}
if (hasBias) {
VLOG(30) << "hierarchical_sigmoid_grad op "
<< framework::GradVarName("Bias") << " is set to LoDTensor";
block->Var(bias_grad_var_name)
->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(bias_grad_var_name, framework::proto::VarType::LOD_TENSOR);
}
block->Var(w_grad_var_name)->SetDataType(block->Var("W")->GetDataType());
ctx.SetDataType(w_grad_var_name, ctx.GetDataType(ctx.Input("W")[0]));
}
};
......
......@@ -64,11 +64,9 @@ class LoDRankTableInferShape : public framework::InferShapeBase {
class LoDRankTableInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &o : op_desc.Output("Out")) {
block->FindRecursiveOrCreateVar(o).SetType(
framework::proto::VarType::LOD_RANK_TABLE);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &o : ctx.Output("Out")) {
ctx.SetType(o, framework::proto::VarType::LOD_RANK_TABLE);
}
}
};
......
......@@ -201,10 +201,9 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase {
class LoDTensorToArrayInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR_ARRAY);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, framework::proto::VarType::LOD_TENSOR_ARRAY);
}
}
};
......
......@@ -147,22 +147,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto attr = op_desc.GetAttr("is_sparse");
void operator()(framework::InferVarTypeContext& ctx) const override {
auto out_var_name = ctx.Output(framework::GradVarName("W")).front();
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
<< " is set to SelectedRows";
block->Var(out_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
<< " is set to LoDTensor";
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
}
block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
ctx.SetDataType(out_var_name, ctx.GetDataType(ctx.Input("W")[0]));
}
};
......
......@@ -237,23 +237,21 @@ class NCEOpGrad : public framework::OperatorWithKernel {
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto weight_grad = op_desc.Output(framework::GradVarName("Weight")).front();
void operator()(framework::InferVarTypeContext &ctx) const override {
auto weight_grad = ctx.Output(framework::GradVarName("Weight")).front();
auto attr = op_desc.GetAttr("is_sparse");
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "nce_op_grad op " << weight_grad << " and "
<< " is set to SelectedRows";
block->Var(weight_grad)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(weight_grad, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "nce_op_grad op " << weight_grad << " and "
<< " is set to LoDTensor";
block->Var(weight_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(weight_grad, framework::proto::VarType::LOD_TENSOR);
}
block->Var(weight_grad)->SetDataType(block->Var("Input")->GetDataType());
ctx.SetDataType(weight_grad, ctx.GetDataType(ctx.Input("Input")[0]));
}
};
......
......@@ -37,8 +37,7 @@ class NgraphEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class NgraphEngineInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace operators
......
......@@ -56,9 +56,9 @@ This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each
weight using a local learning rate:
$$
local\_lr = \eta *
local\_lr = \eta *
\frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\
velocity = mu * velocity +
velocity = mu * velocity +
local\_lr * (grad + \beta * param) \\
param = param - velocity. \\
$$
......@@ -72,8 +72,7 @@ use L2 regularizers in case of using LARS.
class LarsMomentumOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace operators
} // namespace paddle
......
......@@ -21,18 +21,14 @@ using Tensor = framework::Tensor;
class MomentumOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto input_var = op_desc.Input("Param")[0];
for (auto& out_var : op_desc.Output("ParamOut")) {
if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
framework::proto::VarType::SELECTED_ROWS) {
block->FindRecursiveOrCreateVar(out_var).SetType(
framework::proto::VarType::SELECTED_ROWS);
} else if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
void operator()(framework::InferVarTypeContext& ctx) const override {
auto& input_var = ctx.Input("Param")[0];
for (auto& out_var : ctx.Output("ParamOut")) {
if (ctx.GetType(input_var) == framework::proto::VarType::SELECTED_ROWS) {
ctx.SetType(out_var, framework::proto::VarType::SELECTED_ROWS);
} else if (ctx.GetType(input_var) ==
framework::proto::VarType::LOD_TENSOR) {
block->FindRecursiveOrCreateVar(out_var).SetType(
framework::proto::VarType::LOD_TENSOR);
ctx.SetType(out_var, framework::proto::VarType::LOD_TENSOR);
} else {
PADDLE_THROW(
"Only support LodTensor and SelectedRows, Unexpected Input Type.");
......
......@@ -50,20 +50,18 @@ class SGDOp : public framework::OperatorWithKernel {
class SGDOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto input_var_n = op_desc.Input("Param")[0];
auto in_var_type = block->FindRecursiveOrCreateVar(input_var_n).GetType();
void operator()(framework::InferVarTypeContext &ctx) const override {
auto &input_var_n = ctx.Input("Param")[0];
auto in_var_type = ctx.GetType(input_var_n);
PADDLE_ENFORCE(in_var_type == framework::proto::VarType::SELECTED_ROWS ||
in_var_type == framework::proto::VarType::LOD_TENSOR,
"The input Var's type should be LoDtensor or SelectedRows,"
" but the received var(%s)'s type is %s",
input_var_n, in_var_type);
for (auto &out_var_n : op_desc.Output("ParamOut")) {
auto &out_var = block->FindRecursiveOrCreateVar(out_var_n);
if (out_var.GetType() != in_var_type) {
out_var.SetType(in_var_type);
for (auto &out_var_n : ctx.Output("ParamOut")) {
if (ctx.GetType(out_var_n) != in_var_type) {
ctx.SetType(out_var_n, in_var_type);
}
}
}
......
......@@ -91,15 +91,12 @@ static void CallPythonFunc(py::object *callable,
}
}
class PyFuncOpVarTypInference : public framework::VarTypeInference {
class PyFuncOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op,
framework::BlockDesc *block) const override {
auto &outs = op.Outputs();
bool has_out = (outs.count("Out") > 0 && !outs.at("Out").empty());
void operator()(framework::InferVarTypeContext &ctx) const override {
bool has_out = (ctx.HasOutput("Out") && !ctx.Output("Out").empty());
auto &ins = op.Inputs();
bool has_in = (ins.count("X") > 0 && !ins.at("X").empty());
bool has_in = (ctx.HasInput("X") && !ctx.Input("Out").empty());
/**
* X or Out can be empty, so that py_func can be more flexible
......@@ -107,7 +104,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
*/
PADDLE_ENFORCE(has_in || has_out, "Input(X) or Output(Out) must exist");
PADDLE_ENFORCE_GE(boost::get<int>(op.GetAttr(kForwardPythonCallableId)), 0,
PADDLE_ENFORCE_GE(boost::get<int>(ctx.GetAttr(kForwardPythonCallableId)), 0,
"Function id cannot be less than 0");
if (!has_out) return;
......@@ -118,7 +115,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
* the corresponding forward variable
*/
const std::string kGradVarSuffix = framework::kGradVarSuffix;
auto &out_var_names = outs.at("Out");
auto &out_var_names = ctx.Output("Out");
for (auto &out_var_name : out_var_names) {
if (out_var_name == framework::kEmptyVarName ||
out_var_name.size() < kGradVarSuffix.size()) {
......@@ -128,18 +125,17 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
size_t len = out_var_name.size() - kGradVarSuffix.size();
if (out_var_name.substr(len) == kGradVarSuffix) {
auto fwd_var_name = out_var_name.substr(0, len);
auto *out_var_desc = block->FindVarRecursive(out_var_name);
auto *fwd_var_desc = block->FindVarRecursive(fwd_var_name);
PADDLE_ENFORCE_NOT_NULL(out_var_desc, "Backward variable %s not found",
out_var_name);
PADDLE_ENFORCE_NOT_NULL(fwd_var_desc, "Forward variable %s not found",
fwd_var_name);
PADDLE_ENFORCE(ctx.HasVar(out_var_name),
"Backward variable %s not found", out_var_name);
PADDLE_ENFORCE(ctx.HasVar(fwd_var_name),
"Backward variable %s not found", fwd_var_name);
VLOG(10) << "Infer var_desc of Output(" << out_var_name << ") as Input("
<< fwd_var_name << ")";
out_var_desc->SetShape(fwd_var_desc->GetShape());
out_var_desc->SetDataType(fwd_var_desc->GetDataType());
out_var_desc->SetLoDLevel(fwd_var_desc->GetLoDLevel());
out_var_desc->SetType(fwd_var_desc->GetType());
ctx.SetShape(out_var_name, ctx.GetShape(fwd_var_name));
ctx.SetDataType(out_var_name, ctx.GetDataType(fwd_var_name));
ctx.SetLoDLevel(out_var_name, ctx.GetLoDLevel(fwd_var_name));
ctx.SetType(out_var_name, ctx.GetType(fwd_var_name));
}
}
}
......@@ -309,5 +305,5 @@ class PyFuncOp : public framework::OperatorBase {
namespace ops = paddle::operators;
REGISTER_OPERATOR(py_func, ops::PyFuncOp, ops::PyFuncOpMaker,
ops::PyFuncOpVarTypInference, ops::PyFuncOpShapeInference,
ops::PyFuncOpVarTypeInference, ops::PyFuncOpShapeInference,
ops::PyFuncOpGradDescMaker);
......@@ -85,10 +85,10 @@ class CreateCustomReaderOpMaker : public DecoratedReaderMakerBase {
AddComment(R"DOC(
CreateCustomReader Operator
A custom reader can be used for input data preprocessing.
A custom reader holds its own sub-block, which will be executed in CPU
in its 'ReadNext()' function. Users can configurate their own
preprocessing pipelines by inserting operators into custom reader's
A custom reader can be used for input data preprocessing.
A custom reader holds its own sub-block, which will be executed in CPU
in its 'ReadNext()' function. Users can configurate their own
preprocessing pipelines by inserting operators into custom reader's
sub-block.
)DOC");
}
......@@ -123,23 +123,22 @@ class CustomReaderInferShape : public framework::InferShapeBase {
class CustomReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
framework::VarDesc* out_reader = block->FindVar(op_desc.Output("Out")[0]);
PADDLE_ENFORCE_NOT_NULL(out_reader);
out_reader->SetType(framework::proto::VarType::READER);
void operator()(const framework::InferVarTypeContext& ctx) const override {
auto& out_var_name = ctx.Output("Out")[0];
PADDLE_ENFORCE(ctx.HasVar(out_var_name));
ctx.SetType(out_var_name, framework::proto::VarType::READER);
auto sink_var_names =
boost::get<std::vector<std::string>>(op_desc.GetAttr("sink_var_names"));
boost::get<std::vector<std::string>>(ctx.GetAttr("sink_var_names"));
const auto* sub_block =
boost::get<framework::BlockDesc*>(op_desc.GetAttr("sub_block"));
boost::get<framework::BlockDesc*>(ctx.GetAttr("sub_block"));
std::vector<framework::proto::VarType::Type> res_data_types;
for (const std::string& var_name : sink_var_names) {
framework::VarDesc* var = sub_block->FindVar(var_name);
PADDLE_ENFORCE_NOT_NULL(var);
res_data_types.emplace_back(var->GetDataType());
}
out_reader->SetDataTypes(res_data_types);
ctx.SetDataTypes(out_var_name, res_data_types);
}
};
......
......@@ -51,19 +51,16 @@ class ReadInferShape : public framework::InferShapeBase {
class ReadInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
bool infer_out = boost::get<bool>(op_desc.GetAttr("infer_out"));
void operator()(const framework::InferVarTypeContext& ctx) const override {
bool infer_out = boost::get<bool>(ctx.GetAttr("infer_out"));
if (infer_out) {
std::string reader_name = op_desc.Input("Reader")[0];
std::vector<std::string> out_names = op_desc.Output("Out");
framework::VarDesc* reader = block->FindVarRecursive(reader_name);
auto dtypes = reader->GetDataTypes();
std::string reader_name = ctx.Input("Reader")[0];
std::vector<std::string> out_names = ctx.Output("Out");
auto dtypes = ctx.GetDataTypes(reader_name);
PADDLE_ENFORCE_EQ(dtypes.size(), out_names.size());
for (size_t i = 0; i < dtypes.size(); ++i) {
framework::VarDesc& out = block->FindRecursiveOrCreateVar(out_names[i]);
out.SetType(framework::proto::VarType::LOD_TENSOR);
out.SetDataType(dtypes[i]);
ctx.SetType(out_names[i], framework::proto::VarType::LOD_TENSOR);
ctx.SetDataType(out_names[i], dtypes[i]);
}
}
}
......
......@@ -59,8 +59,7 @@ class FileReaderInferShape : public framework::InferShapeBase {
class FileReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override;
void operator()(framework::InferVarTypeContext& ctx) const override;
};
// general infershape for decorated reader
......@@ -72,8 +71,7 @@ class DecoratedReaderInferShape : public framework::InferShapeBase {
// general var type inference for decorated reader
class DecoratedReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override;
void operator()(framework::InferVarTypeContext& ctx) const override;
};
class DecoratedReaderMakerBase : public framework::OpProtoAndCheckerMaker {
......
......@@ -159,12 +159,9 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file
class SaveOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output(LOOKUP_TABLE_PATH).front();
auto &out_var = block->FindRecursiveOrCreateVar(out_var_name);
auto var_type = framework::proto::VarType::RAW;
out_var.SetType(var_type);
void operator()(framework::InferVarTypeContext &ctx) const override {
auto out_var_name = ctx.Output(LOOKUP_TABLE_PATH).front();
ctx.SetType(out_var_name, framework::proto::VarType::RAW);
}
};
......
......@@ -69,17 +69,13 @@ $$Out = scale*(X + bias)$$
class ScaleOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto &in_var_name = op_desc.Input("X").front();
auto &in_var = detail::Ref(block->FindVarRecursive(in_var_name));
auto out_var_name = op_desc.Output("Out").front();
auto *out_var = block->FindVarRecursive(out_var_name);
void operator()(framework::InferVarTypeContext &ctx) const override {
auto &in_var_name = ctx.Input("X").front();
auto out_var_name = ctx.Output("Out").front();
if (in_var_name != out_var_name) {
out_var->SetType(in_var.GetType());
out_var->SetDataType(in_var.GetDataType());
ctx.SetType(out_var_name, ctx.GetType(in_var_name));
ctx.SetDataType(out_var_name, ctx.GetDataType(in_var_name));
}
}
};
......
......@@ -60,10 +60,9 @@ class SplitSelectedRowsOp : public framework::OperatorWithKernel {
class SplitSelectedRowsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::proto::VarType::SELECTED_ROWS);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, framework::proto::VarType::SELECTED_ROWS);
}
}
};
......
......@@ -159,24 +159,20 @@ the LoD information with the first input.
class SumOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
void operator()(framework::InferVarTypeContext& ctx) const override {
auto& inputs = ctx.Input("X");
auto var_type = framework::proto::VarType::SELECTED_ROWS;
for (auto& name : op_desc.Input("X")) {
VLOG(10) << name << " "
<< block->FindRecursiveOrCreateVar(name).GetType();
for (auto& name : ctx.Input("X")) {
VLOG(10) << name << " " << ctx.GetType(name);
}
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [block](const std::string& name) {
return block->FindRecursiveOrCreateVar(name).GetType() ==
framework::proto::VarType::LOD_TENSOR;
inputs.begin(), inputs.end(), [ctx](const std::string& name) {
return ctx.GetType(name) == framework::proto::VarType::LOD_TENSOR;
});
auto is_tensor_array = [block](const std::string& name) {
return block->FindRecursiveOrCreateVar(name).GetType() ==
framework::proto::VarType::LOD_TENSOR_ARRAY;
auto is_tensor_array = [ctx](const std::string& name) {
return ctx.GetType(name) == framework::proto::VarType::LOD_TENSOR_ARRAY;
};
bool any_input_is_tensor_array =
......@@ -188,8 +184,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
if (!all_inputs_are_tensor_array) {
std::ostringstream os;
for (auto& each : inputs) {
os << " " << each << " type is "
<< block->FindRecursiveOrCreateVar(each).GetType() << "\n";
os << " " << each << " type is " << ctx.GetType(each) << "\n";
}
PADDLE_ENFORCE(all_inputs_are_tensor_array,
"Not all inputs are tensor array:\n%s", os.str());
......@@ -199,11 +194,9 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
var_type = framework::proto::VarType::LOD_TENSOR;
}
auto out_var_name = op_desc.Output("Out").front();
auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
out_var.SetType(var_type);
auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
out_var.SetDataType(in_var.GetDataType());
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, var_type);
ctx.SetDataType(out_var_name, ctx.GetDataType(inputs.front()));
}
};
......
......@@ -177,10 +177,9 @@ class LoDTensorArray2TensorGradInferShape : public framework::InferShapeBase {
class LoDTensorArray2TensorGradInferVarType
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output(framework::GradVarName("X"))) {
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR_ARRAY);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &out_var : ctx.Output(framework::GradVarName("X"))) {
ctx.SetType(out_var, framework::proto::VarType::LOD_TENSOR_ARRAY);
}
}
};
......
......@@ -46,8 +46,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class TensorRTEngineInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace operators
......
......@@ -112,17 +112,15 @@ uniform distribution. The random result is in set [min, max].
class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output("Out").front();
void operator()(framework::InferVarTypeContext &ctx) const override {
auto out_var_name = ctx.Output("Out").front();
auto var_data_type = static_cast<framework::proto::VarType::Type>(
boost::get<int>(op_desc.GetAttr("dtype")));
boost::get<int>(ctx.GetAttr("dtype")));
auto out_var = block->FindRecursiveOrCreateVar(out_var_name);
if (out_var.GetType() != framework::proto::VarType::SELECTED_ROWS) {
out_var.SetType(framework::proto::VarType::LOD_TENSOR);
if (ctx.GetType(out_var_name) != framework::proto::VarType::SELECTED_ROWS) {
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
}
out_var.SetDataType(var_data_type);
ctx.SetDataType(out_var_name, var_data_type);
}
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册