Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ca1544a3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ca1544a3
编写于
4月 17, 2020
作者:
X
xiaogang
提交者:
GitHub
4月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enhance attention_lstm and param_attr error message (#23678) (#23836)
* enhance attention_lstm and param_attr error message
上级
d26f579a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
90 addition
and
54 deletion
+90
-54
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+78
-53
python/paddle/fluid/param_attr.py
python/paddle/fluid/param_attr.py
+12
-1
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
ca1544a3
...
...
@@ -23,97 +23,119 @@ namespace paddle {
namespace
operators
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Assert only one Input(X) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Assert only one Input(C0) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
"Assert only one Input(LSTMWeight) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
"Assert only one Input(LSTMBias) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Assert only one Input(AttentionWeight) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Assert only one Output(Hidden) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Assert only one Output(Cell) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Assert only one Output(AttentionedX) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Assert only one Output(AttentionFCOut) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
"Assert only one Output(LSTMX) of AttentionLSTM."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Assert only one Output(LSTMOUT) of AttentionLSTM."
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"C0"
),
"Input"
,
"C0"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"LSTMWeight"
),
"Input"
,
"LSTMWeight"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"LSTMBias"
),
"Input"
,
"LSTMBias"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Input"
,
"AttentionWeight"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Hidden"
),
"Output"
,
"Hidden"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Cell"
),
"Output"
,
"Cell"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Output"
,
"AttentionedX"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Output"
,
"AttentionFCOut"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"LSTMX"
),
"Output"
,
"LSTMX"
,
"AttentionLstm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Output"
,
"LSTMOUT"
,
"AttentionLstm"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(X)'s rank must be 2."
));
auto
w_dims
=
ctx
->
GetInputDim
(
"LSTMWeight"
);
const
int
D
=
w_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Input(LSTMWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
"LSTMWeight dims should be (%d + %d) * %d."
,
D
,
M
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(LSTMWeight)'s rank must be 2."
));
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
platform
::
errors
::
InvalidArgument
(
"LSTMWeight dims should be (%d + %d) * %d."
,
D
,
M
,
4
*
D
));
auto
b_dims
=
ctx
->
GetInputDim
(
"LSTMBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(LSTMBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
D
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(LSTMBias)'s rank must be 2."
));
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
platform
::
errors
::
InvalidArgument
(
"LSTMBias dims should be 1 x %d."
,
4
*
D
));
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
D
,
platform
::
errors
::
InvalidArgument
(
"LSTMBias dims should be 1 x %d."
,
4
*
D
));
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(C0)'s rank must be 2."
));
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
platform
::
errors
::
InvalidArgument
(
"C0 dims should be N x %d."
,
D
));
}
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE_EQ
(
h_dims
.
size
(),
2UL
,
"Input(H0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
h_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"Input(H0)'s rank must be 2."
));
if
(
ctx
->
IsRuntime
()
||
(
framework
::
product
(
c_dims
)
>
0
&&
framework
::
product
(
h_dims
)
>
0
))
{
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
PADDLE_ENFORCE_EQ
(
h_dims
,
c_dims
,
platform
::
errors
::
InvalidArgument
(
"The dimension of Input(H0) and Input(C0) "
"should be the same."
));
}
}
auto
atten_w_dims
=
ctx
->
GetInputDim
(
"AttentionWeight"
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
.
size
(),
2
,
"Input(AttentionWeight)'s rank must be 2."
);
platform
::
errors
::
InvalidArgument
(
"Input(AttentionWeight)'s rank must be 2."
));
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
0
],
M
+
D
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
platform
::
errors
::
InvalidArgument
(
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
));
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
platform
::
errors
::
InvalidArgument
(
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
));
if
(
ctx
->
HasInput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
platform
::
errors
::
InvalidArgument
(
"Input(AttentionBias)'s rank must be 2."
));
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
0
],
1
,
"AttentionBias shapes must be 1 * 1."
);
platform
::
errors
::
InvalidArgument
(
"AttentionBias shapes must be 1 * 1."
));
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
1
],
1
,
"AttentionBias shapes must be 1 * 1."
);
platform
::
errors
::
InvalidArgument
(
"AttentionBias shapes must be 1 * 1."
));
}
if
(
ctx
->
HasInput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
platform
::
errors
::
InvalidArgument
(
"Input(AttentionScalar)'s rank must be 2."
));
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
platform
::
errors
::
InvalidArgument
(
"AttentionScalar shapes must be 1 * 1."
));
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
platform
::
errors
::
InvalidArgument
(
"AttentionScalar shapes must be 1 * 1."
));
}
if
(
ctx
->
HasInput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"AttentionScalar"
),
"Input"
,
"AttentionScalar"
,
"AttentionLstm"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
platform
::
errors
::
InvalidArgument
(
"Input(AttentionScalarBias)'s rank must be 2."
));
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
platform
::
errors
::
InvalidArgument
(
"AttentionScalarBias shapes must be 1 * 1."
));
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
platform
::
errors
::
InvalidArgument
(
"AttentionScalarBias shapes must be 1 * 1."
));
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
D
});
...
...
@@ -301,8 +323,11 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
int
len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
max_seq_len
=
max_seq_len
<
len
?
len
:
max_seq_len
;
}
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
1UL
,
"Input(X)'s lod size must be 1."
);
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input(X)'s lod size must be 1."
));
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
platform
::
errors
::
InvalidArgument
(
"C0 dims should be %d x %d."
,
N
,
D
));
fc_out
->
Resize
({
max_seq_len
,
1
});
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
...
...
python/paddle/fluid/param_attr.py
浏览文件 @
ca1544a3
...
...
@@ -16,9 +16,11 @@ from __future__ import print_function
import
six
import
warnings
import
sys
from
.initializer
import
Initializer
,
Xavier
,
Constant
from
.regularizer
import
WeightDecayRegularizer
from
paddle.fluid.data_feeder
import
check_type
__all__
=
[
'ParamAttr'
,
...
...
@@ -77,8 +79,17 @@ class ParamAttr(object):
regularizer
=
None
,
trainable
=
True
,
do_model_average
=
True
):
if
sys
.
version_info
.
major
==
2
:
check_type
(
name
,
"name"
,
(
str
,
type
(
None
),
unicode
),
"ParamAttr"
)
else
:
check_type
(
name
,
"name"
,
(
str
,
type
(
None
)),
"ParamAttr"
)
check_type
(
learning_rate
,
"learning_rate"
,
(
float
,
int
),
"ParamAttr"
)
check_type
(
trainable
,
"trainable"
,
(
bool
),
"ParamAttr"
)
check_type
(
do_model_average
,
"do_model_average"
,
(
bool
),
"ParamAttr"
)
self
.
name
=
name
if
isinstance
(
self
.
name
,
six
.
string_types
)
and
self
.
name
==
""
:
if
self
.
name
==
""
:
raise
ValueError
(
"name of ParamAttr can not be empty str"
)
self
.
initializer
=
initializer
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录