未验证 提交 c8affff0 编写于 作者: B Baibaifan 提交者: GitHub

add c_identity op npu (#32787)

* add c_identity_op_npu
上级 4628b6f8
...@@ -14,35 +14,11 @@ limitations under the License. */ ...@@ -14,35 +14,11 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/c_identity_op.h" #include "paddle/fluid/operators/collective/c_identity_op.h"
namespace paddle {
namespace operators {
template <typename T>
class CIdentityOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto x = ctx.Input<framework::LoDTensor>("X");
auto out = ctx.Output<framework::LoDTensor>("Out");
int rid = ctx.Attr<int>("ring_id");
PADDLE_ENFORCE_GE(
rid, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_identity op must be non-negative.", rid));
out->mutable_data<T>(ctx.GetPlace());
TensorCopy(*x, out->place(), out);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
namespace plat = paddle::platform; namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_identity, ops::CIdentityOpCUDAKernel<float>, REGISTER_OP_CUDA_KERNEL(c_identity, ops::CIdentityOpKernel<float>,
ops::CIdentityOpCUDAKernel<double>, ops::CIdentityOpKernel<double>,
ops::CIdentityOpCUDAKernel<int>, ops::CIdentityOpKernel<int>,
ops::CIdentityOpCUDAKernel<int64_t>, ops::CIdentityOpKernel<int64_t>,
ops::CIdentityOpCUDAKernel<plat::float16>); ops::CIdentityOpKernel<plat::float16>);
...@@ -34,5 +34,23 @@ class CIdentityOpCPUKernel : public framework::OpKernel<T> { ...@@ -34,5 +34,23 @@ class CIdentityOpCPUKernel : public framework::OpKernel<T> {
} }
}; };
template <typename T>
class CIdentityOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto x = ctx.Input<framework::LoDTensor>("X");
auto out = ctx.Output<framework::LoDTensor>("Out");
int rid = ctx.Attr<int>("ring_id");
PADDLE_ENFORCE_GE(
rid, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_identity op must be non-negative.", rid));
out->mutable_data<T>(ctx.GetPlace());
TensorCopy(*x, out->place(), out);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_identity_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(c_identity, ops::CIdentityOpKernel<float>,
ops::CIdentityOpKernel<double>,
ops::CIdentityOpKernel<int>,
ops::CIdentityOpKernel<int64_t>,
ops::CIdentityOpKernel<plat::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base_npu import TestCollectiveRunnerBase, runtime_main
paddle.enable_static()
class TestCollectiveIdentity(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program):
ring_id = 0
nranks = 2
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32')
toutdata = main_prog.current_block().create_var(
name="outofgather",
dtype='float32',
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
main_prog.global_block().append_op(
type="c_identity",
inputs={'X': tindata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id,
'nranks': nranks})
return toutdata
if __name__ == "__main__":
runtime_main(TestCollectiveIdentity, "identity", 0)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import os
from test_collective_base_npu import TestDistBase
paddle.enable_static()
class TestIdentityOp(TestDistBase):
def _setup_config(self):
pass
def test_identity(self, col_type="identity"):
dist_env = os.environ
self.check_with_place(
"collective_identity_op_npu.py", col_type, need_envs=dist_env)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import six
import sys
import subprocess
import traceback
import functools
import pickle
from contextlib import closing
from six import string_types
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
class TestCollectiveRunnerBase(object):
def get_model(self, train_prog, startup_prog):
raise NotImplementedError(
"get model should be implemented by child class.")
def wait_server_ready(self, endpoints):
assert not isinstance(endpoints, string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with closing(
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
sys.stderr.write("server not ready, wait 3 sec to retry...\n")
sys.stderr.write("not ready endpoints:" + str(
not_ready_endpoints) + "\n")
sys.stderr.flush()
time.sleep(3)
else:
break
#endpoints should be ["ip1:port1","ip2:port2"]
def initCommunicator(self, program, rank, nranks, wait_port,
current_endpoint, endpoints):
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
self.wait_server_ready(other_endpoints)
block = program.global_block()
hccl_id_var = block.create_var(
name=nameGen.generate('hccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_hccl_id',
inputs={},
outputs={'Out': hccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init_hccl',
inputs={'X': hccl_id_var},
outputs={},
attrs={
'rank': rank,
'ring_id': self.global_ring_id,
'device_id': int(os.getenv("FLAGS_selected_npus")),
'rank_ids': nranks
})
def run_trainer(self, args):
train_prog = fluid.Program()
startup_prog = fluid.Program()
endpoints = args["endpoints"].split(",")
rank = args["trainerid"]
current_endpoint = args["currentendpoint"]
nranks = 2
self.initCommunicator(startup_prog, rank, nranks, True,
current_endpoint, endpoints)
self.rank = rank
result = self.get_model(train_prog, startup_prog)
device_id = int(os.getenv("FLAGS_selected_npus", "0"))
place = fluid.NPUPlace(device_id)
exe = fluid.Executor(place)
exe.run(startup_prog)
np.random.seed(os.getpid())
indata = np.random.random((10, 1000))
out = exe.run(train_prog,
feed={'tindata': indata},
fetch_list=[result.name])
if six.PY2:
print(pickle.dumps(out))
else:
sys.stdout.buffer.write(pickle.dumps(out))
def runtime_main(test_class, col_type, sub_type):
args = {}
model = test_class()
args["deviceid"] = os.getenv("FLAGS_selected_npus")
args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
args["col_type"] = col_type
model.run_trainer(args)
import paddle.compat as cpt
import socket
from contextlib import closing
class TestDistBase(unittest.TestCase):
def setUp(self):
self._port_set = set()
self._trainers = 2
self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
self._find_free_port(), self._find_free_port())
self._python_interp = sys.executable
def _find_free_port(self):
def __free_port():
with closing(socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as s:
s.bind(('', 0))
return s.getsockname()[1]
while True:
port = __free_port()
if port not in self._port_set:
self._port_set.add(port)
return port
def _run_cluster(self, model_file, envs):
worker_endpoints = self._ps_endpoints.split(",")
w0_ep, w1_ep = worker_endpoints
#print("w0_ep:",w0_ep," w1_ep:",w1_ep)
env0 = {
"FLAGS_selected_npus": "0",
"PADDLE_TRAINER_ID": "0",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
"PADDLE_CURRENT_ENDPOINT": w0_ep,
}
env1 = {
"FLAGS_selected_npus": "1",
"PADDLE_TRAINER_ID": "1",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
"PADDLE_CURRENT_ENDPOINT": w1_ep,
}
#update environment
env0.update(envs)
env1.update(envs)
tr_cmd = "%s %s"
tr0_cmd = tr_cmd % (self._python_interp, model_file)
tr1_cmd = tr_cmd % (self._python_interp, model_file)
tr0_pipe = open("/tmp/tr0_err.log", "wb")
tr1_pipe = open("/tmp/tr1_err.log", "wb")
#print(tr0_cmd)
tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(),
stdout=subprocess.PIPE,
stderr=tr0_pipe,
env=env0)
tr1_proc = subprocess.Popen(
tr0_cmd.strip().split(),
stdout=subprocess.PIPE,
stderr=tr1_pipe,
env=env1)
tr0_out, tr0_err = tr0_proc.communicate()
tr1_out, tr1_err = tr1_proc.communicate()
sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
# close trainer file
tr0_pipe.close()
tr1_pipe.close()
return pickle.loads(tr0_out), pickle.loads(
tr1_out), tr0_proc.pid, tr1_proc.pid
def check_with_place(self, model_file, col_type, need_envs={}):
tr0_out, tr1_out, pid0, pid1 = self._run_cluster(model_file, need_envs)
np.random.seed(pid0)
input1 = np.random.random((10, 1000))
np.random.seed(pid1)
input2 = np.random.random((10, 1000))
if col_type == "identity":
need_result1 = input1
need_result2 = input2
self.assertTrue(np.allclose(tr0_out, need_result1, rtol=0, atol=0))
self.assertTrue(np.allclose(tr1_out, need_result2, rtol=0, atol=0))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册