Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c7f1f3ed
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7f1f3ed
编写于
3月 19, 2019
作者:
Q
Qiyang Min
提交者:
GitHub
3月 19, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16214 from velconia/imperative_infer_var_type
Implement imperative infer var type
上级
f8df9eb3
565b19b7
变更
47
隐藏空白更改
内联
并排
Showing
47 changed file
with
575 addition
and
345 deletion
+575
-345
paddle/fluid/framework/details/graph_test_base.h
paddle/fluid/framework/details/graph_test_base.h
+5
-5
paddle/fluid/framework/details/op_registry.h
paddle/fluid/framework/details/op_registry.h
+4
-2
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+7
-7
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+3
-1
paddle/fluid/framework/type_defs.h
paddle/fluid/framework/type_defs.h
+2
-1
paddle/fluid/framework/var_type_inference.h
paddle/fluid/framework/var_type_inference.h
+108
-9
paddle/fluid/framework/var_type_inference_test.cc
paddle/fluid/framework/var_type_inference_test.cc
+6
-6
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+66
-22
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+157
-16
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+18
-11
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+1
-1
paddle/fluid/imperative/type_defs.h
paddle/fluid/imperative/type_defs.h
+1
-0
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+9
-12
paddle/fluid/operators/beam_search_op.cc
paddle/fluid/operators/beam_search_op.cc
+6
-9
paddle/fluid/operators/controlflow/get_places_op.cc
paddle/fluid/operators/controlflow/get_places_op.cc
+3
-5
paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc
...fluid/operators/controlflow/tensor_array_read_write_op.cc
+6
-9
paddle/fluid/operators/controlflow/while_op.cc
paddle/fluid/operators/controlflow/while_op.cc
+7
-10
paddle/fluid/operators/distributed_ops/fake_init_op.cc
paddle/fluid/operators/distributed_ops/fake_init_op.cc
+1
-2
paddle/fluid/operators/distributed_ops/merge_ids_op.cc
paddle/fluid/operators/distributed_ops/merge_ids_op.cc
+4
-5
paddle/fluid/operators/distributed_ops/split_ids_op.cc
paddle/fluid/operators/distributed_ops/split_ids_op.cc
+6
-5
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+4
-5
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
+6
-8
paddle/fluid/operators/get_tensor_from_selected_rows_op.cc
paddle/fluid/operators/get_tensor_from_selected_rows_op.cc
+6
-9
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+9
-15
paddle/fluid/operators/lod_rank_table_op.cc
paddle/fluid/operators/lod_rank_table_op.cc
+3
-5
paddle/fluid/operators/lod_tensor_to_array_op.cc
paddle/fluid/operators/lod_tensor_to_array_op.cc
+3
-4
paddle/fluid/operators/lookup_table_op.cc
paddle/fluid/operators/lookup_table_op.cc
+6
-8
paddle/fluid/operators/nccl/nccl_op.cc
paddle/fluid/operators/nccl/nccl_op.cc
+3
-6
paddle/fluid/operators/nce_op.cc
paddle/fluid/operators/nce_op.cc
+6
-8
paddle/fluid/operators/ngraph/ngraph_engine_op.cc
paddle/fluid/operators/ngraph/ngraph_engine_op.cc
+1
-2
paddle/fluid/operators/optimizers/lars_momentum_op.cc
paddle/fluid/operators/optimizers/lars_momentum_op.cc
+3
-4
paddle/fluid/operators/optimizers/momentum_op.cc
paddle/fluid/operators/optimizers/momentum_op.cc
+7
-11
paddle/fluid/operators/optimizers/sgd_op.cc
paddle/fluid/operators/optimizers/sgd_op.cc
+6
-8
paddle/fluid/operators/py_func_op.cc
paddle/fluid/operators/py_func_op.cc
+20
-21
paddle/fluid/operators/reader/create_custom_reader_op.cc
paddle/fluid/operators/reader/create_custom_reader_op.cc
+11
-12
paddle/fluid/operators/reader/read_op.cc
paddle/fluid/operators/reader/read_op.cc
+7
-10
paddle/fluid/operators/reader/reader_op_registry.cc
paddle/fluid/operators/reader/reader_op_registry.cc
+9
-12
paddle/fluid/operators/reader/reader_op_registry.h
paddle/fluid/operators/reader/reader_op_registry.h
+4
-4
paddle/fluid/operators/save_op.cc
paddle/fluid/operators/save_op.cc
+3
-6
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+6
-9
paddle/fluid/operators/split_selected_rows_op.cc
paddle/fluid/operators/split_selected_rows_op.cc
+5
-4
paddle/fluid/operators/sum_op.cc
paddle/fluid/operators/sum_op.cc
+13
-19
paddle/fluid/operators/tensor_array_to_tensor_op.cc
paddle/fluid/operators/tensor_array_to_tensor_op.cc
+3
-4
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
+1
-2
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+7
-8
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+2
-2
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-1
未找到文件。
paddle/fluid/framework/details/graph_test_base.h
浏览文件 @
c7f1f3ed
...
...
@@ -68,11 +68,11 @@ class SplitOpMaker : public OpProtoAndCheckerMaker {
class
DummyVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
auto
type
=
block
->
Var
(
inputs
.
front
())
->
GetType
(
);
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
type
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
type
=
ctx
->
GetType
(
inputs
.
front
()
);
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
type
);
}
};
...
...
paddle/fluid/framework/details/op_registry.h
浏览文件 @
c7f1f3ed
...
...
@@ -16,6 +16,8 @@ limitations under the License. */
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/inplace_op_inference.h"
...
...
@@ -127,9 +129,9 @@ struct OpInfoFiller<T, kGradOpDescMaker> {
template
<
typename
T
>
struct
OpInfoFiller
<
T
,
kVarTypeInference
>
{
void
operator
()(
const
char
*
op_type
,
OpInfo
*
info
)
const
{
info
->
infer_var_type_
=
[](
const
OpDesc
&
fwd_op
,
BlockDesc
*
block
)
{
info
->
infer_var_type_
=
[](
InferVarTypeContext
*
context
)
{
T
inference
;
inference
(
fwd_op
,
block
);
inference
(
context
);
};
}
};
...
...
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
c7f1f3ed
...
...
@@ -43,20 +43,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class
SumOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
void
operator
()(
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
default_var_type
=
proto
::
VarType
::
SELECTED_ROWS
;
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
Var
(
name
)
->
GetType
(
)
==
proto
::
VarType
::
LOD_TENSOR
;
inputs
.
begin
(),
inputs
.
end
(),
[
&
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
proto
::
VarType
::
LOD_TENSOR
;
});
if
(
any_input_is_lod_tensor
)
{
default_var_type
=
proto
::
VarType
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
default_var_type
);
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
default_var_type
);
}
};
...
...
@@ -71,7 +71,7 @@ class DummyOpMaker : public OpProtoAndCheckerMaker {
class
DummyOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
c7f1f3ed
...
...
@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -677,7 +678,8 @@ void OpDesc::InferVarType(BlockDesc *block) const {
// var type inference. Hence, we don't do any "default" setting here.
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
if
(
info
.
infer_var_type_
)
{
info
.
infer_var_type_
(
*
this
,
block
);
InferVarTypeContext
context
(
this
,
block
);
info
.
infer_var_type_
(
&
context
);
}
}
...
...
paddle/fluid/framework/type_defs.h
浏览文件 @
c7f1f3ed
...
...
@@ -27,6 +27,7 @@ namespace framework {
class
OperatorBase
;
class
OpDesc
;
class
InferShapeContext
;
class
InferVarTypeContext
;
class
BlockDesc
;
class
Variable
;
...
...
@@ -53,7 +54,7 @@ using GradOpMakerFN = std::function<std::vector<std::unique_ptr<OpDesc>>(
const
std
::
vector
<
BlockDesc
*>&
grad_block
)
>
;
using
InferVarTypeFN
=
std
::
function
<
void
(
const
OpDesc
&
/*op_desc*/
,
BlockDesc
*
/*block
*/
)
>
;
std
::
function
<
void
(
framework
::
InferVarTypeContext
*
/*context
*/
)
>
;
using
InferShapeFN
=
std
::
function
<
void
(
InferShapeContext
*
)
>
;
...
...
paddle/fluid/framework/var_type_inference.h
浏览文件 @
c7f1f3ed
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/type_defs.h"
...
...
@@ -21,26 +23,123 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
class
OpDesc
;
class
BlockDesc
;
// default infer var type context
class
InferVarTypeContext
{
public:
InferVarTypeContext
(
const
OpDesc
*
op
,
BlockDesc
*
block
)
:
op_
(
op
),
block_
(
block
)
{}
virtual
~
InferVarTypeContext
()
{}
virtual
Attribute
GetAttr
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
GetAttr
(
name
);
}
virtual
bool
HasVar
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindVarRecursive
(
name
)
!=
nullptr
;
}
virtual
bool
HasInput
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Inputs
().
count
(
name
)
>
0
;
}
virtual
bool
HasOutput
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Outputs
().
count
(
name
)
>
0
;
}
virtual
const
std
::
vector
<
std
::
string
>&
Input
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Input
(
name
);
}
virtual
const
std
::
vector
<
std
::
string
>&
Output
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
op_
);
return
op_
->
Output
(
name
);
}
virtual
proto
::
VarType
::
Type
GetType
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetType
();
}
virtual
void
SetType
(
const
std
::
string
&
name
,
proto
::
VarType
::
Type
type
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetType
(
type
);
}
virtual
proto
::
VarType
::
Type
GetDataType
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetDataType
();
}
virtual
void
SetDataType
(
const
std
::
string
&
name
,
proto
::
VarType
::
Type
type
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetDataType
(
type
);
}
virtual
std
::
vector
<
proto
::
VarType
::
Type
>
GetDataTypes
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetDataTypes
();
}
virtual
void
SetDataTypes
(
const
std
::
string
&
name
,
const
std
::
vector
<
proto
::
VarType
::
Type
>&
multiple_data_type
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetDataTypes
(
multiple_data_type
);
}
virtual
std
::
vector
<
int64_t
>
GetShape
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetShape
();
}
virtual
void
SetShape
(
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
dims
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetShape
(
dims
);
}
virtual
int32_t
GetLoDLevel
(
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
return
block_
->
FindRecursiveOrCreateVar
(
name
).
GetLoDLevel
();
}
virtual
void
SetLoDLevel
(
const
std
::
string
&
name
,
int32_t
lod_level
)
{
PADDLE_ENFORCE_NOT_NULL
(
block_
);
block_
->
FindRecursiveOrCreateVar
(
name
).
SetLoDLevel
(
lod_level
);
}
protected:
const
OpDesc
*
op_
;
BlockDesc
*
block_
;
};
class
VarTypeInference
{
public:
virtual
~
VarTypeInference
()
{}
virtual
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
=
0
;
virtual
void
operator
()(
InferVarTypeContext
*
context
)
const
=
0
;
// NOLINT
};
class
PassInDtypeAndVarTypeToOutput
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
final
{
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
final
{
// NOLINT
auto
in_out_var_names
=
this
->
GetInputOutputWithSameType
();
for
(
auto
&
i_o_n
:
in_out_var_names
)
{
auto
&
x_name
=
op_desc
.
Input
(
i_o_n
.
first
).
at
(
0
);
auto
&
out_name
=
op_desc
.
Output
(
i_o_n
.
second
).
at
(
0
);
auto
&
x_name
=
ctx
->
Input
(
i_o_n
.
first
).
at
(
0
);
auto
&
out_name
=
ctx
->
Output
(
i_o_n
.
second
).
at
(
0
);
auto
&
x
=
block
->
FindRecursiveOrCreateVar
(
x_name
);
auto
&
out
=
block
->
FindRecursiveOrCreateVar
(
out_name
);
out
.
SetType
(
x
.
GetType
());
out
.
SetDataType
(
x
.
GetDataType
());
ctx
->
SetType
(
out_name
,
ctx
->
GetType
(
x_name
));
ctx
->
SetDataType
(
out_name
,
ctx
->
GetDataType
(
x_name
));
}
}
...
...
paddle/fluid/framework/var_type_inference_test.cc
浏览文件 @
c7f1f3ed
...
...
@@ -44,20 +44,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class
SumOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
default_var_type
=
proto
::
VarType
::
SELECTED_ROWS
;
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
Var
(
name
)
->
GetType
(
)
==
proto
::
VarType
::
LOD_TENSOR
;
inputs
.
begin
(),
inputs
.
end
(),
[
&
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
proto
::
VarType
::
LOD_TENSOR
;
});
if
(
any_input_is_lod_tensor
)
{
default_var_type
=
proto
::
VarType
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
default_var_type
);
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
default_var_type
);
}
};
}
// namespace framework
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
c7f1f3ed
...
...
@@ -218,7 +218,7 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
"%s has no backward implementation"
,
Type
());
VLOG
(
3
)
<<
"apply op grad: "
<<
Type
();
std
::
vector
<
framework
::
VariableValue
Map
>
tmp_grad_outputs
;
std
::
vector
<
VarBasePtr
Map
>
tmp_grad_outputs
;
if
(
backward_id_
>
0
)
{
VLOG
(
3
)
<<
"py_layer_grad"
;
tmp_grad_outputs
.
resize
(
1
);
...
...
@@ -241,26 +241,62 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
auto
&
outputs
=
tmp_grad_outputs
[
k
][
it
.
first
];
outputs
.
reserve
(
it
.
second
.
size
());
for
(
size_t
i
=
0
;
i
<
it
.
second
.
size
();
++
i
)
{
VarBase
*
origin_grad_var_base
=
it
.
second
[
i
];
// Allocate a new variable
Variable
*
tmp_var
=
new
framework
::
Variable
();
tmp_var
->
GetMutable
<
framework
::
LoDTensor
>
();
outputs
.
emplace_back
(
tmp_var
);
VarBase
*
tmp_grad_var_base
=
new
VarBase
(
string
::
Sprintf
(
"%s@IGrad"
,
origin_grad_var_base
->
Name
()),
origin_grad_var_base
->
DataType
(),
origin_grad_var_base
->
Dims
(),
place_
,
true
,
false
);
outputs
.
emplace_back
(
tmp_grad_var_base
);
}
}
// Run grad op
framework
::
RuntimeContext
ctx
(
grad_input_vars_
[
k
],
tmp_grad_outputs
[
k
]);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
// grad_op_desc->InferVarType(block_);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
auto
&
info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
grad_op_desc
->
Type
());
if
(
info
.
infer_var_type_
)
{
RuntimeInferVarTypeContext
infer_var_type_ctx
(
&
grad_input_vars_
[
k
],
&
tmp_grad_outputs
[
k
],
&
attrs_
);
info
.
infer_var_type_
(
&
infer_var_type_ctx
);
}
framework
::
OperatorWithKernel
*
op_kernel
=
dynamic_cast
<
framework
::
OperatorWithKernel
*>
(
opbase
.
get
());
PADDLE_ENFORCE_NOT_NULL
(
op_kernel
,
"only support op with kernel"
);
// Run grad op
framework
::
VariableValueMap
grad_invars_map
;
framework
::
VariableValueMap
grad_outvars_map
;
for
(
const
auto
&
it
:
grad_input_vars_
[
k
])
{
auto
&
grad_invars
=
grad_invars_map
[
it
.
first
];
grad_invars
.
reserve
(
it
.
second
.
size
());
for
(
const
VarBase
*
grad_inp
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_inp
->
var_
,
"op %s input %s nullptr"
,
grad_op_desc
->
Type
(),
grad_inp
->
Name
());
grad_invars
.
emplace_back
(
grad_inp
->
var_
);
}
}
for
(
const
auto
&
it
:
tmp_grad_outputs
[
k
])
{
auto
&
grad_outvars
=
grad_outvars_map
[
it
.
first
];
grad_outvars
.
reserve
(
it
.
second
.
size
());
for
(
VarBase
*
grad_out
:
it
.
second
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_out
->
var_
,
"op %s output %s nullptr"
,
grad_op_desc
->
Type
(),
grad_out
->
Name
());
grad_outvars
.
emplace_back
(
grad_out
->
var_
);
}
}
framework
::
RuntimeContext
ctx
(
grad_invars_map
,
grad_outvars_map
);
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
...
...
@@ -277,8 +313,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
origin_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
framework
::
Variable
*
grad
=
outputs
[
i
];
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
];
framework
::
Variable
*
grad
=
outputs
[
i
]
->
var_
;
framework
::
Variable
*
orig_grad
=
origin_outputs
[
i
]
->
var_
;
AddTo
(
grad
,
orig_grad
,
place_
);
delete
grad
;
}
...
...
@@ -326,28 +362,35 @@ void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
int
PyLayer
::
NumFuncs
()
{
return
py_funcs_
.
size
();
}
std
::
vector
<
Variable
*>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
std
::
vector
<
framework
::
Variable
*>
invars
;
for
(
const
VarBase
*
in
:
inputs
)
{
invars
.
push_back
(
in
->
var_
);
}
std
::
vector
<
framework
::
Variable
*>
PyLayer
::
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
return
CallPythonFunc
(
py_funcs_
[
func_id
],
in
var
s
);
return
CallPythonFunc
(
py_funcs_
[
func_id
],
in
put
s
);
}
std
::
vector
<
Var
iable
*>
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variabl
e
*>&
inputs
)
{
std
::
vector
<
Var
Base
*>
PyLayer
::
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
VarBas
e
*>&
inputs
)
{
PADDLE_ENFORCE
(
py_funcs_
.
find
(
func_id
)
!=
py_funcs_
.
end
());
return
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
);
auto
rets
=
CallPythonFunc
(
py_funcs_
[
func_id
],
inputs
);
std
::
vector
<
VarBase
*>
outs
;
outs
.
reserve
(
rets
.
size
());
for
(
size_t
i
=
0U
;
i
!=
rets
.
size
();
++
i
)
{
outs
.
emplace_back
(
new
VarBase
(
string
::
Sprintf
(
"%s_out_%d"
,
framework
::
GradVarName
(
PyLayer
::
kFwdOut
),
i
),
rets
[
i
],
nullptr
,
true
));
}
return
outs
;
}
std
::
vector
<
framework
::
Variable
*>
PyLayer
::
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
Variabl
e
*>&
ins
)
{
const
py
::
object
&
callable
,
const
std
::
vector
<
VarBas
e
*>&
ins
)
{
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
const
framework
::
LoDTensor
&
t
=
ins
[
i
]
->
Get
<
framework
::
LoDTensor
>
();
const
framework
::
LoDTensor
&
t
=
ins
[
i
]
->
var_
->
Get
<
framework
::
LoDTensor
>
();
in_args
[
i
]
=
t
.
IsInitialized
()
?
py
::
cast
(
t
)
:
py
::
cast
(
nullptr
);
}
VLOG
(
3
)
<<
"pyfunc in "
<<
py
::
len
(
in_args
);
...
...
@@ -357,6 +400,7 @@ std::vector<framework::Variable*> PyLayer::CallPythonFunc(
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
size_t
ret_num
=
py
::
len
(
ret_tuple
);
std
::
vector
<
framework
::
Variable
*>
outs
;
outs
.
reserve
(
ret_num
);
VLOG
(
3
)
<<
"pyfunc out "
<<
ret_num
;
for
(
size_t
i
=
0
;
i
<
ret_num
;
++
i
)
{
try
{
...
...
@@ -367,7 +411,7 @@ std::vector<framework::Variable*> PyLayer::CallPythonFunc(
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
ShareDataWith
(
*
py_out_tensor
);
tensor
->
set_lod
(
py_out_tensor
->
lod
());
outs
.
push
_back
(
var
);
outs
.
emplace
_back
(
var
);
}
catch
(
py
::
cast_error
&
)
{
PADDLE_THROW
(
"The %d-th output must be LoDTensor"
,
i
);
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
c7f1f3ed
...
...
@@ -18,14 +18,16 @@
#include "paddle/fluid/framework/python_headers.h"
// clang-format on
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include <unordered_map> // NOLINT
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -135,13 +137,13 @@ class VarBase {
persistable
)
{}
private:
// TODO(minqiyang): need support SelectedRows
VarBase
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
dtype
,
const
framework
::
DDim
&
shape
,
const
platform
::
Place
&
place
,
framework
::
Variable
*
var
,
VarBase
*
grad
,
bool
stop_gradient
,
bool
persistable
)
:
name_
(
name
),
dtype_
(
dtype
),
place_
(
place
),
type_
(
framework
::
proto
::
VarType
::
LOD_TENSOR
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
stop_gradient
),
...
...
@@ -151,10 +153,12 @@ class VarBase {
pre_op_out_idx_
(
-
1
)
{
if
(
!
var_
)
{
var_
=
new
framework
::
Variable
();
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
shape
);
tensor
->
mutable_data
(
place_
,
dtype_
);
}
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
shape
);
tensor
->
mutable_data
(
place
,
dtype
);
VLOG
(
10
)
<<
"create varbase: "
<<
name_
<<
" type: "
<<
dtype
<<
" place: "
<<
place
;
}
public:
...
...
@@ -184,7 +188,23 @@ class VarBase {
}
}
inline
framework
::
proto
::
VarType
::
Type
DType
()
const
{
return
dtype_
;
}
inline
framework
::
DDim
Dims
()
const
{
return
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
();
}
// data type. e.g.. FP32
inline
void
SetDataType
(
framework
::
proto
::
VarType
::
Type
type
)
{
auto
tensor
=
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
mutable_data
(
tensor
->
place
(),
type
);
}
inline
framework
::
proto
::
VarType
::
Type
DataType
()
const
{
auto
tensor
=
var_
->
Get
<
framework
::
LoDTensor
>
();
return
tensor
.
type
();
}
// tensor type. e.g.. LoDTensor
inline
void
SetType
(
framework
::
proto
::
VarType
::
Type
type
)
{
type_
=
type
;
}
inline
framework
::
proto
::
VarType
::
Type
Type
()
const
{
return
type_
;
}
inline
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
...
...
@@ -238,7 +258,7 @@ class VarBase {
}
std
::
string
name_
;
framework
::
proto
::
VarType
::
Type
d
type_
;
framework
::
proto
::
VarType
::
Type
type_
;
platform
::
Place
place_
;
framework
::
Variable
*
var_
;
...
...
@@ -334,11 +354,13 @@ class PYBIND11_HIDDEN OpBase {
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
pre_ops_out_idx_
;
// Inputs to a vector of bwd ops.
std
::
vector
<
framework
::
VariableValue
Map
>
grad_input_vars_
;
std
::
vector
<
VarBasePtr
Map
>
grad_input_vars_
;
// Outputs to a vector of bwd ops.
std
::
vector
<
framework
::
VariableValue
Map
>
grad_output_vars_
;
std
::
vector
<
VarBasePtr
Map
>
grad_output_vars_
;
std
::
vector
<
py
::
object
>
backward_hooks_
;
framework
::
AttributeMap
attrs_
;
};
class
Layer
{
...
...
@@ -365,12 +387,131 @@ class PyLayer {
static
std
::
vector
<
framework
::
Variable
*>
Apply
(
int
func_id
,
const
std
::
vector
<
VarBase
*>&
inputs
);
static
std
::
vector
<
framework
::
Variable
*>
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
framework
::
Variabl
e
*>&
inputs
);
static
std
::
vector
<
VarBase
*>
ApplyGrad
(
int
func_id
,
const
std
::
vector
<
VarBas
e
*>&
inputs
);
private:
static
std
::
vector
<
framework
::
Variable
*>
CallPythonFunc
(
const
py
::
object
&
callable
,
const
std
::
vector
<
framework
::
Variable
*>&
ins
);
const
py
::
object
&
callable
,
const
std
::
vector
<
VarBase
*>&
ins
);
};
// infer var type context for imperative mode
class
PYBIND11_HIDDEN
RuntimeInferVarTypeContext
:
public
framework
::
InferVarTypeContext
{
public:
RuntimeInferVarTypeContext
(
const
imperative
::
VarBasePtrMap
*
inputs
,
imperative
::
VarBasePtrMap
*
outputs
,
const
framework
::
AttributeMap
*
attrs_map
)
:
InferVarTypeContext
(
nullptr
,
nullptr
),
inputs_
(
inputs
),
outputs_
(
outputs
),
attrs_
(
attrs_map
),
input_names_
(),
output_names_
(),
var_set_
()
{
input_names_
.
reserve
(
inputs_
->
size
());
for
(
auto
&
it
:
*
inputs_
)
{
for
(
imperative
::
VarBase
*
var
:
it
.
second
)
{
input_names_
[
it
.
first
].
emplace_back
(
var
->
Name
());
var_set_
[
var
->
Name
()]
=
var
;
}
}
output_names_
.
reserve
(
outputs_
->
size
());
for
(
auto
&
it
:
*
outputs_
)
{
for
(
imperative
::
VarBase
*
var
:
it
.
second
)
{
output_names_
[
it
.
first
].
emplace_back
(
var
->
Name
());
var_set_
[
var
->
Name
()]
=
var
;
}
}
}
virtual
~
RuntimeInferVarTypeContext
()
{}
framework
::
Attribute
GetAttr
(
const
std
::
string
&
name
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
attrs_
);
return
attrs_
->
at
(
name
);
}
bool
HasVar
(
const
std
::
string
&
name
)
const
override
{
return
var_set_
.
count
(
name
)
>
0
;
}
bool
HasInput
(
const
std
::
string
&
name
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
inputs_
);
return
inputs_
->
count
(
name
)
>
0
;
}
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
outputs_
);
return
outputs_
->
count
(
name
)
>
0
;
}
const
std
::
vector
<
std
::
string
>&
Input
(
const
std
::
string
&
name
)
const
override
{
return
input_names_
.
at
(
name
);
}
const
std
::
vector
<
std
::
string
>&
Output
(
const
std
::
string
&
name
)
const
override
{
return
output_names_
.
at
(
name
);
}
framework
::
proto
::
VarType
::
Type
GetType
(
const
std
::
string
&
name
)
const
override
{
return
var_set_
.
at
(
name
)
->
Type
();
}
void
SetType
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
type
)
override
{
var_set_
[
name
]
->
SetType
(
type
);
}
framework
::
proto
::
VarType
::
Type
GetDataType
(
const
std
::
string
&
name
)
const
override
{
return
var_set_
.
at
(
name
)
->
DataType
();
}
void
SetDataType
(
const
std
::
string
&
name
,
framework
::
proto
::
VarType
::
Type
type
)
override
{
var_set_
[
name
]
->
SetDataType
(
type
);
}
std
::
vector
<
framework
::
proto
::
VarType
::
Type
>
GetDataTypes
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
"GetDataTypes is not supported in runtime InferVarType"
);
}
void
SetDataTypes
(
const
std
::
string
&
name
,
const
std
::
vector
<
framework
::
proto
::
VarType
::
Type
>&
multiple_data_type
)
override
{
PADDLE_THROW
(
"SetDataTypes is not supported in runtime InferVarType"
);
}
std
::
vector
<
int64_t
>
GetShape
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
"Do not handle Shape in runtime InferVarType"
);
}
void
SetShape
(
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
dims
)
override
{
PADDLE_THROW
(
"Do not handle Shape in runtime InferVarType"
);
}
int32_t
GetLoDLevel
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
"Do not handle LoDLevel in runtime InferVarType"
);
}
void
SetLoDLevel
(
const
std
::
string
&
name
,
int32_t
lod_level
)
override
{
PADDLE_THROW
(
"Do not handle LoDLevel in runtime InferVarType"
);
}
private:
const
imperative
::
VarBasePtrMap
*
inputs_
;
imperative
::
VarBasePtrMap
*
outputs_
;
const
framework
::
AttributeMap
*
attrs_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
input_names_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
output_names_
;
std
::
unordered_map
<
std
::
string
,
imperative
::
VarBase
*>
var_set_
;
};
}
// namespace imperative
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
c7f1f3ed
...
...
@@ -19,6 +19,7 @@
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -135,7 +136,7 @@ framework::VariableNameMap CreateOutputVarNameMap(
Tracer
::
Tracer
(
framework
::
BlockDesc
*
root_block
)
:
root_block_
(
root_block
)
{}
std
::
set
<
std
::
string
>
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
...
...
@@ -163,7 +164,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op
->
TrackPreOp
(
it
.
first
,
it
.
second
);
}
op
->
output_vars_
=
outputs
;
op
->
output_vars_
=
*
outputs
;
for
(
auto
it
:
op
->
output_vars_
)
{
auto
&
outvars
=
outvars_map
[
it
.
first
];
const
std
::
vector
<
VarBase
*>&
outputs
=
it
.
second
;
...
...
@@ -186,7 +187,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
framework
::
VariableNameMap
invars_name_map
=
CreateInputVarNameMap
(
op
,
inputs
);
framework
::
VariableNameMap
outvars_name_map
=
CreateOutputVarNameMap
(
op
,
outputs
);
CreateOutputVarNameMap
(
op
,
*
outputs
);
auto
&
info
=
framework
::
OpInfoMap
::
Instance
().
Get
(
op
->
Type
());
if
(
info
.
Checker
()
!=
nullptr
)
{
...
...
@@ -197,6 +198,11 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
framework
::
OpRegistry
::
CreateOp
(
op
->
Type
(),
invars_name_map
,
outvars_name_map
,
attrs_map
);
if
(
info
.
infer_var_type_
)
{
RuntimeInferVarTypeContext
infer_var_type_ctx
(
&
inputs
,
outputs
,
&
attrs_map
);
info
.
infer_var_type_
(
&
infer_var_type_ctx
);
}
// TODO(minqiyang): Support infer var type in imperative mode
// Run forward op
VLOG
(
3
)
<<
"tracer running "
<<
op
->
Type
();
...
...
@@ -221,6 +227,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
VLOG
(
5
)
<<
"start construct backward op"
;
// construct grad op descs
op
->
attrs_
=
attrs_map
;
std
::
unique_ptr
<
framework
::
OpDesc
>
fwd_op_desc
(
new
framework
::
OpDesc
(
op
->
Type
(),
invars_name_map
,
outvars_name_map
,
attrs_map
));
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
...
...
@@ -247,12 +254,12 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
auto
fwd_var_it
=
current_vars_map
.
find
(
grad_invar
);
PADDLE_ENFORCE
(
fwd_var_it
!=
current_vars_map
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
emplace_back
(
fwd_var_it
->
second
->
var_
);
grad_in_vars
.
emplace_back
(
fwd_var_it
->
second
);
}
else
{
VarBase
*
var
=
current_vars_map
[
var_it
->
second
];
InitGrad
(
var
,
prepared_op
.
GetDeviceContext
());
// Douts.
grad_in_vars
.
emplace_back
(
var
->
grads_
->
var_
);
grad_in_vars
.
emplace_back
(
var
->
grads_
);
}
vars_saved_for_backward
.
insert
(
it
.
first
);
...
...
@@ -269,7 +276,7 @@ std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op
->
Type
());
VarBase
*
var
=
current_vars_map
[
var_it
->
second
];
InitGrad
(
var
,
prepared_op
.
GetDeviceContext
());
grad_out_vars
.
push_back
(
var
->
grads_
->
var_
);
grad_out_vars
.
push_back
(
var
->
grads_
);
}
}
}
...
...
@@ -309,23 +316,23 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
auto
&
grad_output_vars
=
op
->
grad_output_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdOut
)];
for
(
const
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
->
var_
);
for
(
VarBase
*
inp
:
inputs
)
{
grad_input_vars
.
push_back
(
inp
);
}
for
(
VarBase
*
out
:
outputs
)
{
grad_input_vars
.
push_back
(
out
->
var_
);
grad_input_vars
.
push_back
(
out
);
}
// TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
platform
::
CPUPlace
place
;
for
(
VarBase
*
out
:
outputs
)
{
InitGrad
(
out
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
grad_input_vars
.
push_back
(
out
->
grads_
->
var_
);
grad_input_vars
.
push_back
(
out
->
grads_
);
}
for
(
VarBase
*
inp
:
inputs
)
{
InitGrad
(
inp
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
grad_output_vars
.
push_back
(
inp
->
grads_
->
var_
);
grad_output_vars
.
push_back
(
inp
->
grads_
);
}
}
return
outputs
;
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
c7f1f3ed
...
...
@@ -48,7 +48,7 @@ class Tracer {
virtual
~
Tracer
()
{}
std
::
set
<
std
::
string
>
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
VarBasePtrMap
*
outputs
,
// NOLINT
framework
::
AttributeMap
attrs_map
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
...
...
paddle/fluid/imperative/type_defs.h
浏览文件 @
c7f1f3ed
...
...
@@ -25,6 +25,7 @@ class VarBase;
class
OpBase
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
VarBasePtrMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
const
VarBase
*>>
ConstVarBasePtrMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
OpBase
*>>
OpBasePtrMap
;
}
// namespace imperative
...
...
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -178,10 +178,10 @@ Beam Search Decode Operator. This Operator constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray Input(ids)
whose lods can be used to restore the path in the beam search tree.
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
The Output(SentenceIds) and Output(SentenceScores) separately contain the
generated id sequences and the corresponding scores. The shapes and lods of the
two LodTensor are same. The lod level is 2 and the two levels separately
indicate how many hypotheses each source sentence has and how many ids each
hypothesis has.
)DOC"
);
}
...
...
@@ -203,15 +203,12 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase {
class
BeamSearchDecodeInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"SentenceIds"
))
{
auto
&
sentence_ids
=
block
->
FindRecursiveOrCreateVar
(
o
);
sentence_ids
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o
:
ctx
->
Output
(
"SentenceIds"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"SentenceScores"
))
{
auto
&
sentence_scores
=
block
->
FindRecursiveOrCreateVar
(
o
);
sentence_scores
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
for
(
auto
&
o
:
ctx
->
Output
(
"SentenceScores"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
...
...
paddle/fluid/operators/beam_search_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -65,7 +65,7 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
true
);
AddComment
(
R"DOC(
This operator does the search in beams for one time step.
This operator does the search in beams for one time step.
Specifically, it selects the top-K candidate word ids of current step from
Input(ids) according to their Input(scores) for all source sentences,
where K is Attr(beam_size) and Input(ids), Input(scores) are predicted results
...
...
@@ -120,15 +120,12 @@ class BeamSearchOp : public framework::OperatorWithKernel {
class
BeamSearchInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_ids"
))
{
auto
&
selected_ids
=
block
->
FindRecursiveOrCreateVar
(
o
);
selected_ids
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o
:
ctx
->
Output
(
"selected_ids"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_scores"
))
{
auto
&
selected_scores
=
block
->
FindRecursiveOrCreateVar
(
o
);
selected_scores
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
for
(
auto
&
o
:
ctx
->
Output
(
"selected_scores"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
...
...
paddle/fluid/operators/controlflow/get_places_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -93,11 +93,9 @@ execution.
class
GetPlacesInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o_name
:
op_desc
.
Output
(
"Out"
))
{
block
->
FindRecursiveOrCreateVar
(
o_name
).
SetType
(
framework
::
proto
::
VarType
::
PLACE_LIST
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o_name
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
o_name
,
framework
::
proto
::
VarType
::
PLACE_LIST
);
}
}
};
...
...
paddle/fluid/operators/controlflow/tensor_array_read_write_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -100,16 +100,13 @@ class WriteToArrayInferShape : public framework::InferShapeBase {
class
WriteToArrayInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
x_name
=
op_desc
.
Input
(
"X"
)[
0
];
auto
out_name
=
op_desc
.
Output
(
"Out"
)[
0
];
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
x_name
=
ctx
->
Input
(
"X"
)[
0
];
auto
out_name
=
ctx
->
Output
(
"Out"
)[
0
];
VLOG
(
10
)
<<
"Set Variable "
<<
out_name
<<
" as LOD_TENSOR_ARRAY"
;
auto
&
out
=
block
->
FindRecursiveOrCreateVar
(
out_name
);
out
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
auto
*
x
=
block
->
FindVarRecursive
(
x_name
);
if
(
x
!=
nullptr
)
{
out
.
SetDataType
(
x
->
GetDataType
());
ctx
->
SetType
(
out_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
if
(
ctx
->
HasVar
(
x_name
))
{
ctx
->
SetDataType
(
out_name
,
ctx
->
GetDataType
(
x_name
));
}
}
};
...
...
paddle/fluid/operators/controlflow/while_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -365,19 +365,16 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
class
WhileGradOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
p_names
=
op_desc
.
Input
(
kX
);
auto
pg_ig_names
=
op_desc
.
Output
(
framework
::
GradVarName
(
kX
));
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
p_names
=
ctx
->
Input
(
kX
);
auto
pg_ig_names
=
ctx
->
Output
(
framework
::
GradVarName
(
kX
));
for
(
size_t
i
=
0
;
i
<
p_names
.
size
();
++
i
)
{
auto
&
p_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
p_names
[
i
]));
auto
*
g_var
=
block
->
FindVarRecursive
(
pg_ig_names
[
i
]);
if
(
g_var
!=
nullptr
)
{
// Gradient could be @EMPTY@
if
(
ctx
->
HasVar
(
pg_ig_names
[
i
]))
{
VLOG
(
5
)
<<
"Setting "
<<
pg_ig_names
[
i
]
<<
" following "
<<
p_names
[
i
]
<<
" type: "
<<
p_var
.
GetType
(
);
g_var
->
SetType
(
p_var
.
GetType
(
));
g_var
->
SetDataType
(
p_var
.
GetDataType
(
));
<<
" type: "
<<
ctx
->
GetType
(
p_names
[
i
]
);
ctx
->
SetType
(
pg_ig_names
[
i
],
ctx
->
GetType
(
p_names
[
i
]
));
ctx
->
SetDataType
(
pg_ig_names
[
i
],
ctx
->
GetDataType
(
p_names
[
i
]
));
}
}
}
...
...
paddle/fluid/operators/distributed_ops/fake_init_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -56,8 +56,7 @@ class FakeInitOp : public framework::OperatorBase {
class
FakeInitOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
class
FakeInitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/operators/distributed_ops/merge_ids_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -114,11 +114,10 @@ class MergeIdsOp : public framework::OperatorWithKernel {
class
MergeIdsOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
*
input_var
=
block
->
Var
(
op_desc
.
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
input_var
->
GetType
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
input_type
=
ctx
->
GetType
(
ctx
->
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
input_type
);
}
}
};
...
...
paddle/fluid/operators/distributed_ops/split_ids_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/split_ids_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -71,11 +73,10 @@ class SplitIdsOp : public framework::OperatorWithKernel {
class
SplitIdsOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
*
input_var
=
block
->
Var
(
op_desc
.
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
input_var
->
GetType
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
input_type
=
ctx
->
GetType
(
ctx
->
Input
(
"Ids"
)[
0
]);
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
input_type
);
}
}
};
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -39,12 +39,11 @@ class FillConstantOp : public framework::OperatorWithKernel {
class
FillConstantOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
auto
&
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetDataType
(
data_type
);
boost
::
get
<
int
>
(
ctx
->
GetAttr
(
"dtype"
)));
auto
&
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetDataType
(
out_var_name
,
data_type
);
}
};
...
...
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -138,22 +138,20 @@ class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
class
FusedEmbeddingSeqPoolOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/get_tensor_from_selected_rows_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -81,15 +81,12 @@ GetTensorFromSelectedRows is used to get the tensor from SelectedRows.
class
GetTensorFromSelectedRowsOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
final
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
in_var_name
=
op_desc
.
Input
(
"X"
).
front
();
auto
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
in_var
=
block
->
FindRecursiveOrCreateVar
(
in_var_name
);
out_var
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
out_var
.
SetDataType
(
in_var
.
GetDataType
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
{
// NOLINT
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
auto
in_var_name
=
ctx
->
Input
(
"X"
).
front
();
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
in_var_name
));
}
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -197,38 +197,32 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
class
HierarchicalSigmoidGradOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
w_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
));
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
w_grad_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
ctx
->
Output
(
framework
::
GradVarName
(
"Bias"
));
std
::
string
bias_grad_var_name
;
bool
hasBias
=
false
;
if
(
bias_grad_var_name_vec
.
size
())
{
hasBias
=
true
;
bias_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
bias_grad_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
}
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
w_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
bias_grad_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
w_grad_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/lod_rank_table_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -64,11 +64,9 @@ class LoDRankTableInferShape : public framework::InferShapeBase {
class
LoDRankTableInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"Out"
))
{
block
->
FindRecursiveOrCreateVar
(
o
).
SetType
(
framework
::
proto
::
VarType
::
LOD_RANK_TABLE
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
o
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
o
,
framework
::
proto
::
VarType
::
LOD_RANK_TABLE
);
}
}
};
...
...
paddle/fluid/operators/lod_tensor_to_array_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -201,10 +201,9 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase {
class
LoDTensorToArrayInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
}
}
};
...
...
paddle/fluid/operators/lookup_table_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -147,22 +147,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
class
LookupTableOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"lookup_table_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"lookup_table_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
ctx
->
Input
(
"W"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/nccl/nccl_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -60,12 +60,9 @@ class NCCLInitOp : public framework::OperatorBase {
class
NCCLInitOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Communicator"
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
var_type
=
framework
::
proto
::
VarType
::
RAW
;
out_var
.
SetType
(
var_type
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
"Communicator"
).
front
();
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
RAW
);
}
};
...
...
paddle/fluid/operators/nce_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -237,23 +237,21 @@ class NCEOpGrad : public framework::OperatorWithKernel {
class
NCEOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
weight_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
weight_grad
=
ctx
->
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
auto
attr
=
ctx
->
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
" is set to SelectedRows"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
ctx
->
SetType
(
weight_grad
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
" is set to LoDTensor"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
weight_grad
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
weight_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
(
));
ctx
->
SetDataType
(
weight_grad
,
ctx
->
GetDataType
(
ctx
->
Input
(
"Input"
)[
0
]
));
}
};
...
...
paddle/fluid/operators/ngraph/ngraph_engine_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -37,8 +37,7 @@ class NgraphEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class
NgraphEngineInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
...
...
paddle/fluid/operators/optimizers/lars_momentum_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -56,9 +56,9 @@ This optimizer use LARS (https://arxiv.org/abs/1708.03888) to optimize each
weight using a local learning rate:
$$
local\_lr = \eta *
local\_lr = \eta *
\frac{\left \| param \right \|}{\left \| grad \right \| + \beta *\left \| param \right \|} \\
velocity = mu * velocity +
velocity = mu * velocity +
local\_lr * (grad + \beta * param) \\
param = param - velocity. \\
$$
...
...
@@ -72,8 +72,7 @@ use L2 regularizers in case of using LARS.
class
LarsMomentumOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/optimizers/momentum_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -21,18 +21,14 @@ using Tensor = framework::Tensor;
class
MomentumOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var
=
op_desc
.
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
op_desc
.
Output
(
"ParamOut"
))
{
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
input_var
=
ctx
->
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
ctx
->
Output
(
"ParamOut"
))
{
if
(
ctx
->
GetType
(
input_var
)
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
if
(
ctx
->
GetType
(
input_var
)
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
else
{
PADDLE_THROW
(
"Only support LodTensor and SelectedRows, Unexpected Input Type."
);
...
...
paddle/fluid/operators/optimizers/sgd_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -50,20 +50,18 @@ class SGDOp : public framework::OperatorWithKernel {
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var_n
=
op_desc
.
Input
(
"Param"
)[
0
];
auto
in_var_type
=
block
->
FindRecursiveOrCreateVar
(
input_var_n
).
GetType
();
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
input_var_n
=
ctx
->
Input
(
"Param"
)[
0
];
auto
in_var_type
=
ctx
->
GetType
(
input_var_n
);
PADDLE_ENFORCE
(
in_var_type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
in_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input Var's type should be LoDtensor or SelectedRows,"
" but the received var(%s)'s type is %s"
,
input_var_n
,
in_var_type
);
for
(
auto
&
out_var_n
:
op_desc
.
Output
(
"ParamOut"
))
{
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_n
);
if
(
out_var
.
GetType
()
!=
in_var_type
)
{
out_var
.
SetType
(
in_var_type
);
for
(
auto
&
out_var_n
:
ctx
->
Output
(
"ParamOut"
))
{
if
(
ctx
->
GetType
(
out_var_n
)
!=
in_var_type
)
{
ctx
->
SetType
(
out_var_n
,
in_var_type
);
}
}
}
...
...
paddle/fluid/operators/py_func_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -14,8 +14,11 @@
#include "paddle/fluid/operators/py_func_op.h"
#include <memory>
#include <set>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -91,15 +94,12 @@ static void CallPythonFunc(py::object *callable,
}
}
class
PyFuncOpVarTypInference
:
public
framework
::
VarTypeInference
{
class
PyFuncOpVarTyp
e
Inference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
&
outs
=
op
.
Outputs
();
bool
has_out
=
(
outs
.
count
(
"Out"
)
>
0
&&
!
outs
.
at
(
"Out"
).
empty
());
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
bool
has_out
=
(
ctx
->
HasOutput
(
"Out"
)
&&
!
ctx
->
Output
(
"Out"
).
empty
());
auto
&
ins
=
op
.
Inputs
();
bool
has_in
=
(
ins
.
count
(
"X"
)
>
0
&&
!
ins
.
at
(
"X"
).
empty
());
bool
has_in
=
(
ctx
->
HasInput
(
"X"
)
&&
!
ctx
->
Input
(
"X"
).
empty
());
/**
* X or Out can be empty, so that py_func can be more flexible
...
...
@@ -107,8 +107,8 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
*/
PADDLE_ENFORCE
(
has_in
||
has_out
,
"Input(X) or Output(Out) must exist"
);
PADDLE_ENFORCE_GE
(
boost
::
get
<
int
>
(
op
.
GetAttr
(
kForwardPythonCallableId
)),
0
,
"Function id cannot be less than 0"
);
PADDLE_ENFORCE_GE
(
boost
::
get
<
int
>
(
ctx
->
GetAttr
(
kForwardPythonCallableId
))
,
0
,
"Function id cannot be less than 0"
);
if
(
!
has_out
)
return
;
...
...
@@ -118,7 +118,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
* the corresponding forward variable
*/
const
std
::
string
kGradVarSuffix
=
framework
::
kGradVarSuffix
;
auto
&
out_var_names
=
outs
.
a
t
(
"Out"
);
auto
&
out_var_names
=
ctx
->
Outpu
t
(
"Out"
);
for
(
auto
&
out_var_name
:
out_var_names
)
{
if
(
out_var_name
==
framework
::
kEmptyVarName
||
out_var_name
.
size
()
<
kGradVarSuffix
.
size
())
{
...
...
@@ -128,18 +128,17 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
size_t
len
=
out_var_name
.
size
()
-
kGradVarSuffix
.
size
();
if
(
out_var_name
.
substr
(
len
)
==
kGradVarSuffix
)
{
auto
fwd_var_name
=
out_var_name
.
substr
(
0
,
len
);
auto
*
out_var_desc
=
block
->
FindVarRecursive
(
out_var_name
);
auto
*
fwd_var_desc
=
block
->
FindVarRecursive
(
fwd_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
out_var_desc
,
"Backward variable %s not found"
,
out_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
fwd_var_desc
,
"Forward variable %s not found"
,
fwd_var_name
);
PADDLE_ENFORCE
(
ctx
->
HasVar
(
out_var_name
),
"Backward variable %s not found"
,
out_var_name
);
PADDLE_ENFORCE
(
ctx
->
HasVar
(
fwd_var_name
),
"Backward variable %s not found"
,
fwd_var_name
);
VLOG
(
10
)
<<
"Infer var_desc of Output("
<<
out_var_name
<<
") as Input("
<<
fwd_var_name
<<
")"
;
out_var_desc
->
SetShape
(
fwd_var_desc
->
GetShape
());
out_var_desc
->
SetDataType
(
fwd_var_desc
->
GetDataType
());
out_var_desc
->
SetLoDLevel
(
fwd_var_desc
->
GetLoDLevel
());
out_var_desc
->
SetType
(
fwd_var_desc
->
GetType
());
ctx
->
SetShape
(
out_var_name
,
ctx
->
GetShape
(
fwd_var_name
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
fwd_var_name
));
ctx
->
SetLoDLevel
(
out_var_name
,
ctx
->
GetLoDLevel
(
fwd_var_name
));
ctx
->
SetType
(
out_var_name
,
ctx
->
GetType
(
fwd_var_name
));
}
}
}
...
...
@@ -309,5 +308,5 @@ class PyFuncOp : public framework::OperatorBase {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
py_func
,
ops
::
PyFuncOp
,
ops
::
PyFuncOpMaker
,
ops
::
PyFuncOpVarTypInference
,
ops
::
PyFuncOpShapeInference
,
ops
::
PyFuncOpVarTyp
e
Inference
,
ops
::
PyFuncOpShapeInference
,
ops
::
PyFuncOpGradDescMaker
);
paddle/fluid/operators/reader/create_custom_reader_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -85,10 +85,10 @@ class CreateCustomReaderOpMaker : public DecoratedReaderMakerBase {
AddComment
(
R"DOC(
CreateCustomReader Operator
A custom reader can be used for input data preprocessing.
A custom reader holds its own sub-block, which will be executed in CPU
in its 'ReadNext()' function. Users can configurate their own
preprocessing pipelines by inserting operators into custom reader's
A custom reader can be used for input data preprocessing.
A custom reader holds its own sub-block, which will be executed in CPU
in its 'ReadNext()' function. Users can configurate their own
preprocessing pipelines by inserting operators into custom reader's
sub-block.
)DOC"
);
}
...
...
@@ -123,23 +123,22 @@ class CustomReaderInferShape : public framework::InferShapeBase {
class
CustomReaderInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
VarDesc
*
out_reader
=
block
->
FindVar
(
op_desc
.
Output
(
"Out"
)[
0
]);
PADDLE_ENFORCE_NOT_NULL
(
out_reader
);
out_reader
->
SetType
(
framework
::
proto
::
VarType
::
READER
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
out_var_name
=
ctx
->
Output
(
"Out"
)[
0
];
PADDLE_ENFORCE
(
ctx
->
HasVar
(
out_var_name
));
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
READER
);
auto
sink_var_names
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
op_desc
.
GetAttr
(
"sink_var_names"
));
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
ctx
->
GetAttr
(
"sink_var_names"
));
const
auto
*
sub_block
=
boost
::
get
<
framework
::
BlockDesc
*>
(
op_desc
.
GetAttr
(
"sub_block"
));
boost
::
get
<
framework
::
BlockDesc
*>
(
ctx
->
GetAttr
(
"sub_block"
));
std
::
vector
<
framework
::
proto
::
VarType
::
Type
>
res_data_types
;
for
(
const
std
::
string
&
var_name
:
sink_var_names
)
{
framework
::
VarDesc
*
var
=
sub_block
->
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
res_data_types
.
emplace_back
(
var
->
GetDataType
());
}
out_reader
->
SetDataTypes
(
res_data_types
);
ctx
->
SetDataTypes
(
out_var_name
,
res_data_types
);
}
};
...
...
paddle/fluid/operators/reader/read_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -51,19 +51,16 @@ class ReadInferShape : public framework::InferShapeBase {
class
ReadInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
bool
infer_out
=
boost
::
get
<
bool
>
(
op_desc
.
GetAttr
(
"infer_out"
));
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
bool
infer_out
=
boost
::
get
<
bool
>
(
ctx
->
GetAttr
(
"infer_out"
));
if
(
infer_out
)
{
std
::
string
reader_name
=
op_desc
.
Input
(
"Reader"
)[
0
];
std
::
vector
<
std
::
string
>
out_names
=
op_desc
.
Output
(
"Out"
);
framework
::
VarDesc
*
reader
=
block
->
FindVarRecursive
(
reader_name
);
auto
dtypes
=
reader
->
GetDataTypes
();
std
::
string
reader_name
=
ctx
->
Input
(
"Reader"
)[
0
];
std
::
vector
<
std
::
string
>
out_names
=
ctx
->
Output
(
"Out"
);
auto
dtypes
=
ctx
->
GetDataTypes
(
reader_name
);
PADDLE_ENFORCE_EQ
(
dtypes
.
size
(),
out_names
.
size
());
for
(
size_t
i
=
0
;
i
<
dtypes
.
size
();
++
i
)
{
framework
::
VarDesc
&
out
=
block
->
FindRecursiveOrCreateVar
(
out_names
[
i
]);
out
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
out
.
SetDataType
(
dtypes
[
i
]);
ctx
->
SetType
(
out_names
[
i
],
framework
::
proto
::
VarType
::
LOD_TENSOR
);
ctx
->
SetDataType
(
out_names
[
i
],
dtypes
[
i
]);
}
}
}
...
...
paddle/fluid/operators/reader/reader_op_registry.cc
浏览文件 @
c7f1f3ed
...
...
@@ -98,11 +98,10 @@ void FileReaderInferShape::operator()(framework::InferShapeContext* ctx) const {
}
}
void
FileReaderInferVarType
::
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
{
std
::
string
reader_name
=
op_desc
.
Output
(
"Out"
)[
0
];
framework
::
VarDesc
*
reader
=
block
->
FindVarRecursive
(
reader_name
);
reader
->
SetType
(
framework
::
proto
::
VarType
::
READER
);
void
FileReaderInferVarType
::
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
{
std
::
string
reader_name
=
ctx
->
Output
(
"Out"
)[
0
];
ctx
->
SetType
(
reader_name
,
framework
::
proto
::
VarType
::
READER
);
}
void
DecoratedReaderInferShape
::
operator
()(
...
...
@@ -125,13 +124,11 @@ void DecoratedReaderInferShape::operator()(
}
void
DecoratedReaderInferVarType
::
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
{
std
::
string
in_reader_name
=
op_desc
.
Input
(
"UnderlyingReader"
)[
0
];
framework
::
VarDesc
*
in_reader
=
block
->
FindVarRecursive
(
in_reader_name
);
std
::
string
out_reader_name
=
op_desc
.
Output
(
"Out"
)[
0
];
framework
::
VarDesc
*
out_reader
=
block
->
FindVarRecursive
(
out_reader_name
);
out_reader
->
SetType
(
framework
::
proto
::
VarType
::
READER
);
out_reader
->
SetDataTypes
(
in_reader
->
GetDataTypes
());
framework
::
InferVarTypeContext
*
ctx
)
const
{
const
std
::
string
&
in_reader_name
=
ctx
->
Input
(
"UnderlyingReader"
)[
0
];
const
std
::
string
&
out_reader_name
=
ctx
->
Output
(
"Out"
)[
0
];
ctx
->
SetType
(
out_reader_name
,
framework
::
proto
::
VarType
::
READER
);
ctx
->
SetDataTypes
(
out_reader_name
,
ctx
->
GetDataTypes
(
in_reader_name
));
}
void
DecoratedReaderMakerBase
::
Make
()
{
...
...
paddle/fluid/operators/reader/reader_op_registry.h
浏览文件 @
c7f1f3ed
...
...
@@ -14,7 +14,9 @@
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
...
...
@@ -59,8 +61,7 @@ class FileReaderInferShape : public framework::InferShapeBase {
class
FileReaderInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
;
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
;
};
// general infershape for decorated reader
...
...
@@ -72,8 +73,7 @@ class DecoratedReaderInferShape : public framework::InferShapeBase {
// general var type inference for decorated reader
class
DecoratedReaderInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
;
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
;
};
class
DecoratedReaderMakerBase
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/operators/save_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -159,12 +159,9 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file
class
SaveOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
LOOKUP_TABLE_PATH
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
var_type
=
framework
::
proto
::
VarType
::
RAW
;
out_var
.
SetType
(
var_type
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
LOOKUP_TABLE_PATH
).
front
();
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
RAW
);
}
};
...
...
paddle/fluid/operators/scale_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/scale_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/detail/safe_ref.h"
...
...
@@ -69,17 +70,13 @@ $$Out = scale*(X + bias)$$
class
ScaleOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
&
in_var_name
=
op_desc
.
Input
(
"X"
).
front
();
auto
&
in_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
in_var_name
));
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
*
out_var
=
block
->
FindVarRecursive
(
out_var_name
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
in_var_name
=
ctx
->
Input
(
"X"
).
front
();
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
if
(
in_var_name
!=
out_var_name
)
{
out_var
->
SetType
(
in_var
.
GetType
(
));
out_var
->
SetDataType
(
in_var
.
GetDataType
(
));
ctx
->
SetType
(
out_var_name
,
ctx
->
GetType
(
in_var_name
));
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
in_var_name
));
}
}
};
...
...
paddle/fluid/operators/split_selected_rows_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#include "paddle/fluid/operators/split_selected_rows_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -60,10 +62,9 @@ class SplitSelectedRowsOp : public framework::OperatorWithKernel {
class
SplitSelectedRowsOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
Output
(
"Out"
))
{
block
->
Var
(
out_var
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
out_var
:
ctx
->
Output
(
"Out"
))
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
};
...
...
paddle/fluid/operators/sum_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -12,6 +12,7 @@ limitations under the License. */
#include "paddle/fluid/operators/sum_op.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
...
...
@@ -159,24 +160,20 @@ the LoD information with the first input.
class
SumOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
&
inputs
=
ctx
->
Input
(
"X"
);
auto
var_type
=
framework
::
proto
::
VarType
::
SELECTED_ROWS
;
for
(
auto
&
name
:
op_desc
.
Input
(
"X"
))
{
VLOG
(
10
)
<<
name
<<
" "
<<
block
->
FindRecursiveOrCreateVar
(
name
).
GetType
();
for
(
auto
&
name
:
ctx
->
Input
(
"X"
))
{
VLOG
(
10
)
<<
name
<<
" "
<<
ctx
->
GetType
(
name
);
}
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
FindRecursiveOrCreateVar
(
name
).
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
;
inputs
.
begin
(),
inputs
.
end
(),
[
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
framework
::
proto
::
VarType
::
LOD_TENSOR
;
});
auto
is_tensor_array
=
[
block
](
const
std
::
string
&
name
)
{
return
block
->
FindRecursiveOrCreateVar
(
name
).
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
;
auto
is_tensor_array
=
[
ctx
](
const
std
::
string
&
name
)
{
return
ctx
->
GetType
(
name
)
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
;
};
bool
any_input_is_tensor_array
=
...
...
@@ -188,8 +185,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
if
(
!
all_inputs_are_tensor_array
)
{
std
::
ostringstream
os
;
for
(
auto
&
each
:
inputs
)
{
os
<<
" "
<<
each
<<
" type is "
<<
block
->
FindRecursiveOrCreateVar
(
each
).
GetType
()
<<
"
\n
"
;
os
<<
" "
<<
each
<<
" type is "
<<
ctx
->
GetType
(
each
)
<<
"
\n
"
;
}
PADDLE_ENFORCE
(
all_inputs_are_tensor_array
,
"Not all inputs are tensor array:
\n
%s"
,
os
.
str
());
...
...
@@ -199,11 +195,9 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
var_type
=
framework
::
proto
::
VarType
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
out_var
.
SetType
(
var_type
);
auto
&
in_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
inputs
.
front
()));
out_var
.
SetDataType
(
in_var
.
GetDataType
());
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
ctx
->
SetType
(
out_var_name
,
var_type
);
ctx
->
SetDataType
(
out_var_name
,
ctx
->
GetDataType
(
inputs
.
front
()));
}
};
...
...
paddle/fluid/operators/tensor_array_to_tensor_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -177,10 +177,9 @@ class LoDTensorArray2TensorGradInferShape : public framework::InferShapeBase {
class
LoDTensorArray2TensorGradInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
Output
(
framework
::
GradVarName
(
"X"
)))
{
block
->
Var
(
out_var
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
for
(
auto
&
out_var
:
ctx
->
Output
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetType
(
out_var
,
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
);
}
}
};
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -46,8 +46,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class
TensorRTEngineInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{}
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
}
// namespace operators
...
...
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
c7f1f3ed
...
...
@@ -112,17 +112,16 @@ uniform distribution. The random result is in set [min, max].
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
out_var_name
=
ctx
->
Output
(
"Out"
).
front
();
auto
var_data_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"dtype"
)));
boost
::
get
<
int
>
(
ctx
->
GetAttr
(
"dtype"
)));
auto
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
if
(
out_var
.
GetType
()
!=
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
out_var
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
if
(
ctx
->
GetType
(
out_var_name
)
!=
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
ctx
->
SetType
(
out_var_name
,
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
out_var
.
SetDataType
(
var_data_type
);
ctx
->
SetDataType
(
out_var_name
,
var_data_type
);
}
};
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
c7f1f3ed
...
...
@@ -38,7 +38,7 @@ void BindTracer(pybind11::module* m) {
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
const
imperative
::
VarBasePtrMap
&
inputs
,
const
imperative
::
VarBasePtrMap
&
outputs
,
imperative
::
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
CPUPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
...
...
@@ -49,7 +49,7 @@ void BindTracer(pybind11::module* m) {
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
const
imperative
::
VarBasePtrMap
&
inputs
,
const
imperative
::
VarBasePtrMap
&
outputs
,
imperative
::
VarBasePtrMap
*
outputs
,
framework
::
AttributeMap
attrs_map
,
const
platform
::
CUDAPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
c7f1f3ed
...
...
@@ -200,7 +200,7 @@ PYBIND11_MODULE(core, m) {
.
def_property
(
"name"
,
&
imperative
::
VarBase
::
Name
,
&
imperative
::
VarBase
::
SetName
)
.
def_property_readonly
(
"shape"
,
&
imperative
::
VarBase
::
Shape
)
.
def_property_readonly
(
"dtype"
,
&
imperative
::
VarBase
::
DType
)
.
def_property_readonly
(
"dtype"
,
&
imperative
::
VarBase
::
D
ata
Type
)
.
def_property
(
"persistable"
,
&
imperative
::
VarBase
::
IsPersistable
,
&
imperative
::
VarBase
::
SetPersistable
)
.
def_property
(
"stop_gradient"
,
&
imperative
::
VarBase
::
IsStopGradient
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录