Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c7e6a11b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c7e6a11b
编写于
8月 01, 2018
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
merge develop
上级
0015df1b
b5a3e40b
变更
23
隐藏空白更改
内联
并排
Showing
23 changed file
with
583 addition
and
184 deletion
+583
-184
cmake/external/anakin.cmake
cmake/external/anakin.cmake
+4
-3
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+1
-0
paddle/fluid/inference/analysis/data_flow_graph.h
paddle/fluid/inference/analysis/data_flow_graph.h
+1
-1
paddle/fluid/inference/analysis/model_store_pass.cc
paddle/fluid/inference/analysis/model_store_pass.cc
+3
-1
paddle/fluid/inference/analysis/model_store_pass.h
paddle/fluid/inference/analysis/model_store_pass.h
+2
-0
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+4
-1
paddle/fluid/inference/api/api_anakin_engine.cc
paddle/fluid/inference/api/api_anakin_engine.cc
+71
-20
paddle/fluid/inference/api/api_anakin_engine.h
paddle/fluid/inference/api/api_anakin_engine.h
+12
-8
paddle/fluid/inference/api/api_anakin_engine_tester.cc
paddle/fluid/inference/api/api_anakin_engine_tester.cc
+8
-9
paddle/fluid/inference/api/demo_ci/vis_demo.cc
paddle/fluid/inference/api/demo_ci/vis_demo.cc
+1
-1
paddle/fluid/inference/api/paddle_inference_api.h
paddle/fluid/inference/api/paddle_inference_api.h
+3
-1
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+1
-1
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+4
-4
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+12
-12
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+1
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+280
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+137
-0
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+5
-118
python/paddle/fluid/tests/unittests/test_dist_transformer.py
python/paddle/fluid/tests/unittests/test_dist_transformer.py
+27
-0
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+2
-1
python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py
...uid/tests/unittests/test_parallel_executor_transformer.py
+1
-1
python/paddle/fluid/tests/unittests/transformer_model.py
python/paddle/fluid/tests/unittests/transformer_model.py
+1
-1
未找到文件。
cmake/external/anakin.cmake
浏览文件 @
c7e6a11b
...
...
@@ -8,6 +8,7 @@ set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header f
set
(
ANAKIN_LIBRARY
"
${
ANAKIN_INSTALL_DIR
}
"
CACHE STRING
"path of Anakin library"
)
set
(
ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-error=unused-but-set-variable -Wno-unused-but-set-variable
-Wno-error=unused-variable -Wno-unused-variable
-Wno-error=format-extra-args -Wno-format-extra-args
-Wno-error=comment -Wno-comment
...
...
@@ -19,7 +20,7 @@ set(ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-reorder
-Wno-error=cpp
)
set
(
ANAKIN_LIBRARY_URL
"https://github.com/pangge/Anakin/releases/download/
3.0/anakin_release_simple
.tar.gz"
)
set
(
ANAKIN_LIBRARY_URL
"https://github.com/pangge/Anakin/releases/download/
Version0.1.0/anakin
.tar.gz"
)
# A helper function used in Anakin, currently, to use it, one need to recursively include
# nearly all the header files.
...
...
@@ -41,9 +42,9 @@ if (NOT EXISTS "${ANAKIN_INSTALL_DIR}")
message
(
STATUS
"Download Anakin library from
${
ANAKIN_LIBRARY_URL
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
ANAKIN_INSTALL_DIR
}
"
)
execute_process
(
COMMAND bash -c
"rm -rf
${
ANAKIN_INSTALL_DIR
}
/*"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_INSTALL_DIR
}
; wget -q
${
ANAKIN_LIBRARY_URL
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_INSTALL_DIR
}
; wget -
-no-check-certificate -
q
${
ANAKIN_LIBRARY_URL
}
"
)
execute_process
(
COMMAND bash -c
"mkdir -p
${
ANAKIN_INSTALL_DIR
}
"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_INSTALL_DIR
}
; tar xzf anakin
_release_simple
.tar.gz"
)
execute_process
(
COMMAND bash -c
"cd
${
ANAKIN_INSTALL_DIR
}
; tar xzf anakin.tar.gz"
)
endif
()
if
(
WITH_ANAKIN
)
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
c7e6a11b
...
...
@@ -23,6 +23,7 @@
#pragma once
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
...
...
paddle/fluid/inference/analysis/data_flow_graph.h
浏览文件 @
c7e6a11b
...
...
@@ -176,7 +176,7 @@ struct GraphTraits<DataFlowGraph> {
// sub-graph is the inputs nodes and output nodes that doesn't inside the
// sub-graph.
std
::
pair
<
std
::
vector
<
Node
*>
,
std
::
vector
<
Node
*>>
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
);
ExtractInputAndOutputOfSubGraph
(
std
::
vector
<
Node
*>
&
graph
);
// NOLINT
}
// namespace analysis
}
// namespace inference
...
...
paddle/fluid/inference/analysis/model_store_pass.cc
浏览文件 @
c7e6a11b
...
...
@@ -12,11 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/model_store_pass.h"
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/model_store_pass.h"
namespace
paddle
{
namespace
inference
{
...
...
paddle/fluid/inference/analysis/model_store_pass.h
浏览文件 @
c7e6a11b
...
...
@@ -17,6 +17,8 @@
* model in the disk, and that model can be reloaded for prediction.
*/
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/pass.h"
namespace
paddle
{
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
c7e6a11b
...
...
@@ -19,6 +19,7 @@ endif(APPLE)
set
(
inference_deps paddle_inference_api paddle_fluid_api
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
set
(
inference_deps
${
inference_deps
}
paddle_inference_tensorrt_subgraph_engine
)
endif
()
...
...
@@ -63,6 +64,8 @@ endif()
if
(
WITH_ANAKIN
)
# only needed in CI
# Due to Anakin do not have official library releases and the versions of protobuf and cuda do not match Paddle's,
# so anakin library will not be merged to our official inference library. To use anakin prediction API, one need to
# compile the libinference_anakin_api.a and compile with anakin.so.
fetch_include_recursively
(
${
ANAKIN_INCLUDE
}
)
# compile the libinference_anakin_api.a and anakin.so.
nv_library
(
inference_anakin_api SRCS api.cc api_anakin_engine.cc
)
nv_library
(
inference_anakin_api_shared SHARED SRCS api.cc api_anakin_engine.cc
)
...
...
@@ -73,7 +76,7 @@ if (WITH_ANAKIN) # only needed in CI
if
(
WITH_TESTING
)
cc_test
(
inference_anakin_test SRCS api_anakin_engine_tester.cc
ARGS --model=
${
ANAKIN_INSTALL_DIR
}
/mobilenet_v2.anakin.bin
DEPS inference_anakin_api
)
DEPS inference_anakin_api
_shared
)
target_compile_options
(
inference_anakin_test BEFORE PUBLIC
${
ANAKIN_COMPILE_EXTRA_FLAGS
}
)
endif
(
WITH_TESTING
)
endif
()
paddle/fluid/inference/api/api_anakin_engine.cc
浏览文件 @
c7e6a11b
...
...
@@ -18,26 +18,36 @@
namespace
paddle
{
PaddleInferenceAnakinPredictor
::
PaddleInferenceAnakinPredictor
(
template
<
typename
Target
>
PaddleInferenceAnakinPredictor
<
Target
>::
PaddleInferenceAnakinPredictor
(
const
AnakinConfig
&
config
)
{
CHECK
(
Init
(
config
));
}
bool
PaddleInferenceAnakinPredictor
::
Init
(
const
AnakinConfig
&
config
)
{
template
<
typename
Target
>
bool
PaddleInferenceAnakinPredictor
<
Target
>::
Init
(
const
AnakinConfig
&
config
)
{
if
(
!
(
graph_
.
load
(
config
.
model_file
)))
{
LOG
(
FATAL
)
<<
"fail to load graph from "
<<
config
.
model_file
;
return
false
;
}
graph_
.
ResetBatchSize
(
"input_0"
,
config
.
max_batch_size
);
auto
inputs
=
graph_
.
get_ins
();
for
(
auto
&
input_str
:
inputs
)
{
graph_
.
ResetBatchSize
(
input_str
,
config
.
max_batch_size
);
}
// optimization for graph
if
(
!
(
graph_
.
Optimize
()))
{
return
false
;
}
// construct executer
executor_
.
init
(
graph_
);
if
(
executor_p_
==
nullptr
)
{
executor_p_
=
new
anakin
::
Net
<
Target
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
(
graph_
,
true
);
}
return
true
;
}
bool
PaddleInferenceAnakinPredictor
::
Run
(
template
<
typename
Target
>
bool
PaddleInferenceAnakinPredictor
<
Target
>::
Run
(
const
std
::
vector
<
PaddleTensor
>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
output_data
,
int
batch_size
)
{
for
(
const
auto
&
input
:
inputs
)
{
...
...
@@ -46,7 +56,29 @@ bool PaddleInferenceAnakinPredictor::Run(
<<
"'s type is not float"
;
return
false
;
}
auto
d_tensor_in_p
=
executor_
.
get_in
(
input
.
name
);
auto
d_tensor_in_p
=
executor_p_
->
get_in
(
input
.
name
);
auto
net_shape
=
d_tensor_in_p
->
valid_shape
();
if
(
net_shape
.
size
()
!=
input
.
shape
.
size
())
{
LOG
(
ERROR
)
<<
" input "
<<
input
.
name
<<
"'s shape size should be equal to that of net"
;
return
false
;
}
int
sum
=
1
;
for_each
(
input
.
shape
.
begin
(),
input
.
shape
.
end
(),
[
&
](
int
n
)
{
sum
*=
n
;
});
if
(
sum
>
net_shape
.
count
())
{
graph_
.
Reshape
(
input
.
name
,
input
.
shape
);
delete
executor_p_
;
executor_p_
=
new
anakin
::
Net
<
Target
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
(
graph_
,
true
);
d_tensor_in_p
=
executor_p_
->
get_in
(
input
.
name
);
}
anakin
::
saber
::
Shape
tmp_shape
;
for
(
auto
s
:
input
.
shape
)
{
tmp_shape
.
push_back
(
s
);
}
d_tensor_in_p
->
reshape
(
tmp_shape
);
float
*
d_data_p
=
d_tensor_in_p
->
mutable_data
();
if
(
cudaMemcpy
(
d_data_p
,
static_cast
<
float
*>
(
input
.
data
.
data
()),
d_tensor_in_p
->
valid_size
()
*
sizeof
(
float
),
...
...
@@ -56,16 +88,17 @@ bool PaddleInferenceAnakinPredictor::Run(
}
cudaStreamSynchronize
(
NULL
);
}
executor_
.
prediction
();
cudaDeviceSynchronize
();
executor_p_
->
prediction
();
cudaDeviceSynchronize
();
if
(
output_data
->
empty
())
{
LOG
(
ERROR
)
<<
"At least one output should be set with tensors' names."
;
return
false
;
}
for
(
auto
&
output
:
*
output_data
)
{
auto
*
tensor
=
executor_
.
get_out
(
output
.
name
);
output
.
shape
=
tensor
->
shape
();
auto
*
tensor
=
executor_
p_
->
get_out
(
output
.
name
);
output
.
shape
=
tensor
->
valid_
shape
();
if
(
output
.
data
.
length
()
<
tensor
->
valid_size
()
*
sizeof
(
float
))
{
output
.
data
.
Resize
(
tensor
->
valid_size
()
*
sizeof
(
float
));
}
...
...
@@ -81,19 +114,23 @@ bool PaddleInferenceAnakinPredictor::Run(
return
true
;
}
anakin
::
Net
<
anakin
::
NV
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
&
PaddleInferenceAnakinPredictor
::
get_executer
()
{
return
executor_
;
template
<
typename
Target
>
anakin
::
Net
<
Target
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
&
PaddleInferenceAnakinPredictor
<
Target
>::
get_executer
()
{
return
*
executor_p_
;
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
std
::
unique_ptr
<
PaddlePredictor
>
PaddleInferenceAnakinPredictor
::
Clone
()
{
template
<
typename
Target
>
std
::
unique_ptr
<
PaddlePredictor
>
PaddleInferenceAnakinPredictor
<
Target
>::
Clone
()
{
VLOG
(
3
)
<<
"Anakin Predictor::clone"
;
std
::
unique_ptr
<
PaddlePredictor
>
cls
(
new
PaddleInferenceAnakinPredictor
());
std
::
unique_ptr
<
PaddlePredictor
>
cls
(
new
PaddleInferenceAnakinPredictor
<
Target
>
());
// construct executer from other graph
auto
anakin_predictor_p
=
dynamic_cast
<
PaddleInferenceAnakinPredictor
*>
(
cls
.
get
());
dynamic_cast
<
PaddleInferenceAnakinPredictor
<
Target
>
*>
(
cls
.
get
());
if
(
!
anakin_predictor_p
)
{
LOG
(
ERROR
)
<<
"fail to call Init"
;
return
nullptr
;
...
...
@@ -103,14 +140,28 @@ std::unique_ptr<PaddlePredictor> PaddleInferenceAnakinPredictor::Clone() {
return
std
::
move
(
cls
);
}
template
class
PaddleInferenceAnakinPredictor
<
anakin
::
NV
>;
template
class
PaddleInferenceAnakinPredictor
<
anakin
::
X86
>;
// A factory to help create difference predictor.
template
<
>
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
<
AnakinConfig
,
PaddleEngineKind
::
kAnakin
>
(
const
AnakinConfig
&
config
)
{
VLOG
(
3
)
<<
"Anakin Predictor create."
;
std
::
unique_ptr
<
PaddlePredictor
>
x
(
new
PaddleInferenceAnakinPredictor
(
config
));
return
x
;
}
if
(
config
.
target_type
==
AnakinConfig
::
NVGPU
)
{
VLOG
(
3
)
<<
"Anakin Predictor create on [ NVIDIA GPU ]."
;
std
::
unique_ptr
<
PaddlePredictor
>
x
(
new
PaddleInferenceAnakinPredictor
<
anakin
::
NV
>
(
config
));
return
x
;
}
else
if
(
config
.
target_type
==
AnakinConfig
::
X86
)
{
VLOG
(
3
)
<<
"Anakin Predictor create on [ Intel X86 ]."
;
std
::
unique_ptr
<
PaddlePredictor
>
x
(
new
PaddleInferenceAnakinPredictor
<
anakin
::
X86
>
(
config
));
return
x
;
}
else
{
VLOG
(
3
)
<<
"Anakin Predictor create on unknown platform."
;
return
nullptr
;
}
};
}
// namespace paddle
paddle/fluid/inference/api/api_anakin_engine.h
浏览文件 @
c7e6a11b
...
...
@@ -20,14 +20,16 @@ limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
// from anakin
#include "framework/core/net/net.h"
#include "framework/graph/graph.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "saber/core/shape.h"
#include "saber/saber_types.h"
namespace
paddle
{
template
<
typename
Target
>
class
PaddleInferenceAnakinPredictor
:
public
PaddlePredictor
{
public:
PaddleInferenceAnakinPredictor
()
{}
...
...
@@ -42,19 +44,21 @@ class PaddleInferenceAnakinPredictor : public PaddlePredictor {
std
::
unique_ptr
<
PaddlePredictor
>
Clone
()
override
;
anakin
::
Net
<
anakin
::
NV
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>&
anakin
::
Net
<
Target
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>&
get_executer
();
~
PaddleInferenceAnakinPredictor
()
override
{};
~
PaddleInferenceAnakinPredictor
()
override
{
delete
executor_p_
;
executor_p_
=
nullptr
;
};
private:
bool
Init
(
const
AnakinConfig
&
config
);
anakin
::
graph
::
Graph
<
anakin
::
NV
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
anakin
::
graph
::
Graph
<
Target
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
graph_
;
anakin
::
Net
<
anakin
::
NV
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>
executor_
;
anakin
::
Net
<
Target
,
anakin
::
saber
::
AK_FLOAT
,
anakin
::
Precision
::
FP32
>*
executor_
p_
{
nullptr
}
;
AnakinConfig
config_
;
};
...
...
paddle/fluid/inference/api/api_anakin_engine_tester.cc
浏览文件 @
c7e6a11b
...
...
@@ -12,18 +12,20 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
DEFINE_string
(
model
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
model
,
""
,
"Directory of the inference model
(mobile_v2)
."
);
namespace
paddle
{
AnakinConfig
GetConfig
()
{
AnakinConfig
config
;
// using AnakinConfig::X86 if you need to use cpu to do inference
config
.
target_type
=
AnakinConfig
::
NVGPU
;
config
.
model_file
=
FLAGS_model
;
config
.
device
=
0
;
config
.
max_batch_size
=
1
;
...
...
@@ -36,7 +38,6 @@ TEST(inference, anakin) {
CreatePaddlePredictor
<
AnakinConfig
,
PaddleEngineKind
::
kAnakin
>
(
config
);
float
data
[
1
*
3
*
224
*
224
]
=
{
1.0
f
};
PaddleTensor
tensor
;
tensor
.
name
=
"input_0"
;
tensor
.
shape
=
std
::
vector
<
int
>
({
1
,
3
,
224
,
224
});
...
...
@@ -44,22 +45,20 @@ TEST(inference, anakin) {
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
// For simplicity, we set all the slots with the same data.
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
;
paddle_tensor_feeds
.
emplace_back
(
std
::
move
(
tensor
));
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
PaddleTensor
tensor_out
;
tensor_out
.
name
=
"prob_out"
;
tensor_out
.
shape
=
std
::
vector
<
int
>
({
1000
,
1
});
tensor_out
.
shape
=
std
::
vector
<
int
>
({});
tensor_out
.
data
=
PaddleBuf
();
tensor_out
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
outputs
;
outputs
.
emplace_back
(
std
::
move
(
tensor_out
));
std
::
vector
<
PaddleTensor
>
outputs
(
1
,
tensor_out
);
ASSERT_TRUE
(
predictor
->
Run
(
paddle_tensor_feeds
,
&
outputs
));
float
*
data_o
=
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
());
for
(
size_t
j
=
0
;
j
<
1000
;
++
j
)
{
for
(
size_t
j
=
0
;
j
<
outputs
[
0
].
data
.
length
()
;
++
j
)
{
LOG
(
INFO
)
<<
"output["
<<
j
<<
"]: "
<<
data_o
[
j
];
}
}
...
...
paddle/fluid/inference/api/demo_ci/vis_demo.cc
浏览文件 @
c7e6a11b
...
...
@@ -20,8 +20,8 @@ limitations under the License. */
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/demo_ci/utils.h"
#include "paddle/fluid/platform/enforce.h"
#include "utils.h"
#ifdef PADDLE_WITH_CUDA
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
...
...
paddle/fluid/inference/api/paddle_inference_api.h
浏览文件 @
c7e6a11b
...
...
@@ -44,7 +44,7 @@ class PaddleBuf {
PaddleBuf
(
void
*
data
,
size_t
length
)
:
data_
(
data
),
length_
(
length
),
memory_owned_
{
false
}
{}
// Own memory.
PaddleBuf
(
size_t
length
)
explicit
PaddleBuf
(
size_t
length
)
:
data_
(
new
char
[
length
]),
length_
(
length
),
memory_owned_
(
true
)
{}
// Resize to `length` bytes.
void
Resize
(
size_t
length
);
...
...
@@ -126,9 +126,11 @@ struct NativeConfig : public PaddlePredictor::Config {
// Configurations for Anakin engine.
struct
AnakinConfig
:
public
PaddlePredictor
::
Config
{
enum
TargetType
{
NVGPU
=
0
,
X86
};
int
device
;
std
::
string
model_file
;
int
max_batch_size
{
-
1
};
TargetType
target_type
;
};
struct
TensorRTConfig
:
public
NativeConfig
{
...
...
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
c7e6a11b
...
...
@@ -38,7 +38,7 @@ void Reorder2(nvinfer1::DimsHW shape, const T* idata, nvinfer1::DimsHW istrides,
}
// indata c * k
// Reorder the data layout from CK to KC.
void
ReorderCKtoKC
(
TensorRTEngine
::
Weight
&
iweights
,
void
ReorderCKtoKC
(
TensorRTEngine
::
Weight
&
iweights
,
// NOLINT
TensorRTEngine
::
Weight
*
oweights
)
{
int
c
=
iweights
.
dims
[
0
];
int
k
=
iweights
.
dims
[
1
];
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
c7e6a11b
...
...
@@ -20,10 +20,10 @@ limitations under the License. */
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h"
DEFINE_bool
(
cudnn_deterministic
,
tru
e
,
DEFINE_bool
(
cudnn_deterministic
,
fals
e
,
"Whether allow using an autotuning algorithm for convolution "
"operator. The autotuning algorithm may be non-deterministic. If "
"
fals
e, the algorithm is deterministic."
);
"
tru
e, the algorithm is deterministic."
);
namespace
paddle
{
namespace
operators
{
...
...
@@ -272,7 +272,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
handle
=
dev_ctx
.
cudnn_handle
();
if
(
input_grad
)
{
if
(
FLAGS_cudnn_deterministic
)
{
if
(
!
FLAGS_cudnn_deterministic
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardDataAlgorithm
(
handle
,
cudnn_filter_desc
,
...
...
@@ -297,7 +297,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
}
if
(
filter_grad
)
{
if
(
FLAGS_cudnn_deterministic
)
{
if
(
!
FLAGS_cudnn_deterministic
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionBackwardFilterAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
c7e6a11b
...
...
@@ -55,7 +55,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_bwd_weights_pd_
->
src_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
...
...
@@ -64,7 +64,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
diff_dst_pd
=
conv_bwd_weights_pd_
->
diff_dst_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
diff_dst_pd
,
user_pd
,
user_memory_p
,
...
...
@@ -80,7 +80,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
diff_dst_pd
=
conv_bwd_data_pd_
->
diff_dst_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
diff_dst_pd
,
user_pd
,
user_memory_p
,
...
...
@@ -89,7 +89,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
weights_pd
=
conv_bwd_data_pd_
->
weights_primitive_desc
();
auto
user_pd
=
user_weights_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_pd
,
user_weights_memory_p
,
...
...
@@ -109,7 +109,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_pd_
->
src_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
"@src_mem_p"
,
...
...
@@ -118,7 +118,7 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
user_weights_pd
=
user_weights_memory_p
->
get_primitive_desc
();
auto
weights_pd
=
conv_pd_
->
weights_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_weights_pd
,
...
...
@@ -197,12 +197,12 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler {
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
static
std
::
string
GetHash
(
memory
::
dims
&
input_dims
,
memory
::
dims
&
weights_dims
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
std
::
vector
<
int
>&
dilations
,
int
groups
,
const
std
::
string
&
suffix
)
{
static
std
::
string
GetHash
(
memory
::
dims
&
input_dims
,
// NOLINT
memory
::
dims
&
weights_dims
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
std
::
vector
<
int
>&
dilations
,
// NOLINT
int
groups
,
const
std
::
string
&
suffix
)
{
return
dims2str
(
input_dims
)
+
dims2str
(
weights_dims
)
+
dims2str
(
strides
)
+
dims2str
(
paddings
)
+
dims2str
(
dilations
)
+
std
::
to_string
(
groups
)
+
suffix
;
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
c7e6a11b
...
...
@@ -121,7 +121,7 @@ class ParallelExecutor(object):
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
exec_strategy
.
num_threads
=
cpu_num
*
2
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
c7e6a11b
...
...
@@ -49,6 +49,7 @@ list(REMOVE_ITEM TEST_OPS test_dist_train)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_crf
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed
)
list
(
REMOVE_ITEM TEST_OPS test_dist_se_resnext
)
list
(
REMOVE_ITEM TEST_OPS test_dist_transformer
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
@@ -61,4 +62,5 @@ if(WITH_DISTRIBUTE)
endif
()
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL
)
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
py_test_modules
(
test_dist_transformer MODULES test_dist_transformer SERIAL
)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext SERIAL
)
python/paddle/fluid/tests/unittests/dist_transformer.py
0 → 100644
浏览文件 @
c7e6a11b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
import
os
import
sys
import
transformer_model
import
paddle.dataset.wmt16
as
wmt16
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
WMT16_RECORDIO_FILE
=
"/tmp/wmt16.recordio"
class
ModelHyperParams
(
object
):
# Dictionary size for source and target language. This model directly uses
# paddle.dataset.wmt16 in which <bos>, <eos> and <unk> token has
# alreay been added, but the <pad> token is not added. Transformer requires
# sequences in a mini-batch are padded to have the same length. A <pad> token is
# added into the original dictionary in paddle.dateset.wmt16.
# size of source word dictionary.
src_vocab_size
=
10000
# index for <pad> token in source language.
src_pad_idx
=
src_vocab_size
# size of target word dictionay
trg_vocab_size
=
10000
# index for <pad> token in target language.
trg_pad_idx
=
trg_vocab_size
# position value corresponding to the <pad> token.
pos_pad_idx
=
0
# max length of sequences. It should plus 1 to include position
# padding token for position encoding.
max_length
=
50
# the dimension for word embeddings, which is also the last dimension of
# the input and output of multi-head attention, position-wise feed-forward
# networks, encoder and decoder.
d_model
=
512
# size of the hidden layer in position-wise feed-forward networks.
d_inner_hid
=
1024
# the dimension that keys are projected to for dot-product attention.
d_key
=
64
# the dimension that values are projected to for dot-product attention.
d_value
=
64
# number of head used in multi-head attention.
n_head
=
8
# number of sub-layers to be stacked in the encoder and decoder.
n_layer
=
6
# dropout rate used by all dropout layers.
dropout
=
0.1
def
prepare_batch_input
(
insts
,
src_pad_idx
,
trg_pad_idx
,
n_head
):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias. Then, convert the numpy
data to tensors and return a dict mapping names to tensors.
"""
def
__pad_batch_data
(
insts
,
pad_idx
,
is_target
=
False
,
return_pos
=
True
,
return_attn_bias
=
True
,
return_max_len
=
True
):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
inst_data
=
np
.
array
(
[
inst
+
[
pad_idx
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
return_list
+=
[
inst_data
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_pos
:
inst_pos
=
np
.
array
([[
pos_i
+
1
if
w_i
!=
pad_idx
else
0
for
pos_i
,
w_i
in
enumerate
(
inst
)
]
for
inst
in
inst_data
])
return_list
+=
[
inst_pos
.
astype
(
"int64"
).
reshape
([
-
1
,
1
])]
if
return_attn_bias
:
if
is_target
:
# This is used to avoid attention on paddings and subsequent
# words.
slf_attn_bias_data
=
np
.
ones
((
inst_data
.
shape
[
0
],
max_len
,
max_len
))
slf_attn_bias_data
=
np
.
triu
(
slf_attn_bias_data
,
1
).
reshape
(
[
-
1
,
1
,
max_len
,
max_len
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
,
[
1
,
n_head
,
1
,
1
])
*
[
-
1e9
]
else
:
# This is used to avoid attention on paddings.
slf_attn_bias_data
=
np
.
array
([[
0
]
*
len
(
inst
)
+
[
-
1e9
]
*
(
max_len
-
len
(
inst
))
for
inst
in
insts
])
slf_attn_bias_data
=
np
.
tile
(
slf_attn_bias_data
.
reshape
([
-
1
,
1
,
1
,
max_len
]),
[
1
,
n_head
,
max_len
,
1
])
return_list
+=
[
slf_attn_bias_data
.
astype
(
"float32"
)]
if
return_max_len
:
return_list
+=
[
max_len
]
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
__pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
is_target
=
False
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
__pad_batch_data
(
[
inst
[
1
]
for
inst
in
insts
],
trg_pad_idx
,
is_target
=
True
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
trg_max_len
,
1
]).
astype
(
"float32"
)
lbl_word
=
__pad_batch_data
([
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
False
,
False
,
False
,
False
)
lbl_weight
=
(
lbl_word
!=
trg_pad_idx
).
astype
(
"float32"
).
reshape
([
-
1
,
1
])
return
[
src_word
,
src_pos
,
trg_word
,
trg_pos
,
src_slf_attn_bias
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
]
def
transformer
(
use_feed
):
assert
not
use_feed
,
"transfomer doesn't support feed yet"
return
transformer_model
.
transformer
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
pos_pad_idx
)
def
get_model
():
avg_cost
=
transformer
(
use_feed
=
False
)
optimizer
=
fluid
.
optimizer
.
Adam
()
optimizer
.
minimize
(
avg_cost
)
return
avg_cost
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
class
DistTransformer2x2
(
object
):
def
run_pserver
(
self
,
pserver_endpoints
,
trainers
,
current_endpoint
,
trainer_id
):
get_model
()
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
exe
.
run
(
pserver_prog
)
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
20
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
3
)
print
(
"waiting ps ready: "
,
pid
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
retry_times
-=
1
def
run_trainer
(
self
,
place
,
endpoints
,
trainer_id
,
trainers
,
is_dist
=
True
):
avg_cost
=
get_model
()
if
is_dist
:
t
=
get_transpiler
(
trainer_id
,
fluid
.
default_main_program
(),
endpoints
,
trainers
)
trainer_prog
=
t
.
get_trainer_program
()
else
:
trainer_prog
=
fluid
.
default_main_program
()
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
fluid
.
default_startup_program
())
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
1
strategy
.
allow_op_delay
=
False
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
avg_cost
.
name
,
exec_strategy
=
strategy
)
first_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
])
print
(
first_loss
)
for
i
in
xrange
(
5
):
_
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
])
last_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
])
print
(
last_loss
)
def
main
(
role
=
"pserver"
,
endpoints
=
"127.0.0.1:9123"
,
trainer_id
=
0
,
current_endpoint
=
"127.0.0.1:9123"
,
trainers
=
1
,
is_dist
=
True
):
reader
=
paddle
.
batch
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
transformer_model
.
batch_size
)
with
fluid
.
recordio_writer
.
create_recordio_writer
(
WMT16_RECORDIO_FILE
)
as
writer
:
for
batch
in
reader
():
for
tensor
in
prepare_batch_input
(
batch
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
):
t
=
fluid
.
LoDTensor
()
t
.
set
(
tensor
,
fluid
.
CPUPlace
())
writer
.
append_tensor
(
t
)
writer
.
complete_append_tensor
()
model
=
DistTransformer2x2
()
if
role
==
"pserver"
:
model
.
run_pserver
(
endpoints
,
trainers
,
current_endpoint
,
trainer_id
)
else
:
p
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
model
.
run_trainer
(
p
,
endpoints
,
trainer_id
,
trainers
,
is_dist
)
if
__name__
==
"__main__"
:
if
len
(
sys
.
argv
)
!=
7
:
print
(
"Usage: python dist_transformer.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role
=
sys
.
argv
[
1
]
endpoints
=
sys
.
argv
[
2
]
trainer_id
=
int
(
sys
.
argv
[
3
])
current_endpoint
=
sys
.
argv
[
4
]
trainers
=
int
(
sys
.
argv
[
5
])
is_dist
=
True
if
sys
.
argv
[
6
]
==
"TRUE"
else
False
main
(
role
=
role
,
endpoints
=
endpoints
,
trainer_id
=
trainer_id
,
current_endpoint
=
current_endpoint
,
trainers
=
trainers
,
is_dist
=
is_dist
)
python/paddle/fluid/tests/unittests/test_dist_base.py
0 → 100644
浏览文件 @
c7e6a11b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
time
import
unittest
import
os
import
sys
import
signal
import
subprocess
class
TestDistBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_python_interp
=
"python"
def
start_pserver
(
self
,
model_file
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
ps1_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
ps0_proc
=
subprocess
.
Popen
(
ps0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
ps1_proc
=
subprocess
.
Popen
(
ps1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
return
ps0_proc
,
ps1_proc
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
50
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
3
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
as
e
:
sys
.
stderr
.
write
(
'waiting for pserver: %s, left retry %d
\n
'
%
(
e
,
retry_times
))
retry_times
-=
1
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
):
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
),
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
}
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
.
update
(
required_envs
)
local_cmd
=
"%s %s trainer %s 0 %s %d FLASE"
%
\
(
self
.
_python_interp
,
model_file
,
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
)
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env_local
)
local_proc
.
wait
()
out
,
err
=
local_proc
.
communicate
()
local_ret
=
out
sys
.
stderr
.
write
(
'local_loss: %s
\n
'
%
local_ret
)
sys
.
stderr
.
write
(
'local_stderr: %s
\n
'
%
err
)
# Run dist train to compare with local results
ps0
,
ps1
=
self
.
start_pserver
(
model_file
)
self
.
_wait_ps_ready
(
ps0
.
pid
)
self
.
_wait_ps_ready
(
ps1
.
pid
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
tr0_cmd
=
"%s %s trainer %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
tr1_cmd
=
"%s %s trainer %s 1 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
env0
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env1
=
{
"CUDA_VISIBLE_DEVICES"
:
"1"
}
env0
.
update
(
required_envs
)
env1
.
update
(
required_envs
)
FNULL
=
open
(
os
.
devnull
,
'w'
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env0
)
tr1_proc
=
subprocess
.
Popen
(
tr1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env1
)
tr0_proc
.
wait
()
tr1_proc
.
wait
()
out
,
err
=
tr0_proc
.
communicate
()
sys
.
stderr
.
write
(
'dist_stderr: %s
\n
'
%
err
)
loss_data0
=
out
sys
.
stderr
.
write
(
'dist_loss: %s
\n
'
%
loss_data0
)
lines
=
loss_data0
.
split
(
"
\n
"
)
dist_first_loss
=
eval
(
lines
[
0
].
replace
(
" "
,
","
))[
0
]
dist_last_loss
=
eval
(
lines
[
1
].
replace
(
" "
,
","
))[
0
]
local_lines
=
local_ret
.
split
(
"
\n
"
)
local_first_loss
=
eval
(
local_lines
[
0
])[
0
]
local_last_loss
=
eval
(
local_lines
[
1
])[
0
]
self
.
assertAlmostEqual
(
local_first_loss
,
dist_first_loss
,
delta
=
delta
)
self
.
assertAlmostEqual
(
local_last_loss
,
dist_last_loss
,
delta
=
delta
)
# check tr0_out
# FIXME: ensure the server process is killed
# replace with ps0.terminate()
os
.
kill
(
ps0
.
pid
,
signal
.
SIGKILL
)
os
.
kill
(
ps1
.
pid
,
signal
.
SIGKILL
)
FNULL
.
close
()
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
c7e6a11b
...
...
@@ -11,127 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
unittest
import
os
import
sys
import
signal
import
subprocess
class
TestDistSeResneXt2x2
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_python_interp
=
"python"
def
start_pserver
(
self
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_cmd
=
"%s dist_se_resnext.py pserver %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
ps1_cmd
=
"%s dist_se_resnext.py pserver %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
ps0_proc
=
subprocess
.
Popen
(
ps0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
ps1_proc
=
subprocess
.
Popen
(
ps1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
return
ps0_proc
,
ps1_proc
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
20
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
3
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
retry_times
-=
1
def
test_with_place
(
self
):
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
),
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
}
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
.
update
(
required_envs
)
local_cmd
=
"%s dist_se_resnext.py trainer %s 0 %s %d FLASE"
%
\
(
self
.
_python_interp
,
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
)
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env_local
)
local_proc
.
wait
()
out
,
err
=
local_proc
.
communicate
()
local_ret
=
out
sys
.
stderr
.
write
(
'local_loss: %s
\n
'
%
local_ret
)
sys
.
stderr
.
write
(
'local_stderr: %s
\n
'
%
err
)
# Run dist train to compare with local results
ps0
,
ps1
=
self
.
start_pserver
()
self
.
_wait_ps_ready
(
ps0
.
pid
)
self
.
_wait_ps_ready
(
ps1
.
pid
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
tr0_cmd
=
"%s dist_se_resnext.py trainer %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
self
.
_ps_endpoints
,
ps0_ep
,
self
.
_trainers
)
tr1_cmd
=
"%s dist_se_resnext.py trainer %s 1 %s %d TRUE"
%
\
(
self
.
_python_interp
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
env0
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env1
=
{
"CUDA_VISIBLE_DEVICES"
:
"1"
}
env0
.
update
(
required_envs
)
env1
.
update
(
required_envs
)
FNULL
=
open
(
os
.
devnull
,
'w'
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env0
)
tr1_proc
=
subprocess
.
Popen
(
tr1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env1
)
tr0_proc
.
wait
()
tr1_proc
.
wait
()
out
,
err
=
tr0_proc
.
communicate
()
sys
.
stderr
.
write
(
'dist_stderr: %s
\n
'
%
err
)
loss_data0
=
out
sys
.
stderr
.
write
(
'dist_loss: %s
\n
'
%
loss_data0
)
lines
=
loss_data0
.
split
(
"
\n
"
)
dist_first_loss
=
eval
(
lines
[
0
].
replace
(
" "
,
","
))[
0
]
dist_last_loss
=
eval
(
lines
[
1
].
replace
(
" "
,
","
))[
0
]
local_lines
=
local_ret
.
split
(
"
\n
"
)
local_first_loss
=
eval
(
local_lines
[
0
])[
0
]
local_last_loss
=
eval
(
local_lines
[
1
])[
0
]
from
test_dist_base
import
TestDistBase
self
.
assertAlmostEqual
(
local_first_loss
,
dist_first_loss
)
self
.
assertAlmostEqual
(
local_last_loss
,
dist_last_loss
)
# check tr0_out
# FIXME: ensure the server process is killed
# replace with ps0.terminate()
os
.
kill
(
ps0
.
pid
,
signal
.
SIGKILL
)
os
.
kill
(
ps1
.
pid
,
signal
.
SIGKILL
)
FNULL
.
close
()
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
test_se_resnext
(
self
):
# TODO(paddle-dev): Is the delta too large?
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
0.2
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_transformer.py
0 → 100644
浏览文件 @
c7e6a11b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
test_dist_base
import
TestDistBase
class
TestDistTransformer2x2
(
TestDistBase
):
def
test_transformer
(
self
):
# TODO(paddle-dev): check if the delta is OK.
# Usually start around ~8000 and converge to ~5000
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
400
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
c7e6a11b
...
...
@@ -211,7 +211,8 @@ class TestMNIST(TestParallelExecutorBase):
self
.
check_batchnorm_fc_convergence
(
False
)
def
test_batchnorm_fc_with_new_strategy
(
self
):
self
.
_compare_reduce_and_allreduce
(
fc_with_batchnorm
,
True
)
# FIXME(zcd): close this test temporally.
# self._compare_reduce_and_allreduce(fc_with_batchnorm, True)
self
.
_compare_reduce_and_allreduce
(
fc_with_batchnorm
,
False
)
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py
浏览文件 @
c7e6a11b
...
...
@@ -21,7 +21,7 @@ import paddle
import
paddle.dataset.wmt16
as
wmt16
import
os
WMT16_RECORDIO_FILE
=
"
./wmt16_test_pe
.recordio"
WMT16_RECORDIO_FILE
=
"
/tmp/wmt16
.recordio"
class
ModelHyperParams
(
object
):
...
...
python/paddle/fluid/tests/unittests/transformer_model.py
浏览文件 @
c7e6a11b
...
...
@@ -403,7 +403,7 @@ def transformer(
trg_pad_idx
,
pos_pad_idx
,
):
file_obj
=
fluid
.
layers
.
open_recordio_file
(
filename
=
'
.
/wmt16.recordio'
,
filename
=
'
/tmp
/wmt16.recordio'
,
shapes
=
[
[
batch_size
*
max_length
,
1
],
[
batch_size
*
max_length
,
1
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录