Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c792ef7d
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c792ef7d
编写于
8月 18, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix DeConv3D, Conv3D
上级
424b325d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
229 addition
and
205 deletion
+229
-205
paddle/gserver/layers/Conv3DLayer.cpp
paddle/gserver/layers/Conv3DLayer.cpp
+134
-114
paddle/gserver/layers/DeConv3DLayer.cpp
paddle/gserver/layers/DeConv3DLayer.cpp
+95
-91
未找到文件。
paddle/gserver/layers/Conv3DLayer.cpp
浏览文件 @
c792ef7d
...
@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "Conv3DLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Stat.h"
#include "Conv3DLayer.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -22,32 +22,30 @@ REGISTER_LAYER(conv3d, Conv3DLayer);
...
@@ -22,32 +22,30 @@ REGISTER_LAYER(conv3d, Conv3DLayer);
bool
Conv3DLayer
::
init
(
const
LayerMap
&
layerMap
,
bool
Conv3DLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
const
ParameterMap
&
parameterMap
)
{
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
return
false
;
int
index
=
0
;
int
index
=
0
;
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
M_
.
push_back
(
numFilters_
/
conf
.
groups
());
M_
.
push_back
(
numFilters_
/
conf
.
groups
());
K_
.
push_back
(
K_
.
push_back
(
filterPixels_
[
index
]
*
filterChannels_
[
index
]);
conf
.
filter_channels
()
*
conf
.
filter_size_z
()
*
\
if
(
nullptr
!=
weights_
[
index
]
->
getW
())
conf
.
filter_size_y
()
*
conf
.
filter_size
());
weights_
[
index
]
->
getW
()
->
reshape
(
weights_
[
index
]
->
getW
()
->
getWidth
(),
weights_
[
index
]
->
getW
()
->
reshape
(
weights_
[
index
]
->
getW
()
->
getHeight
());
weights_
[
index
]
->
getW
()
->
getWidth
(),
if
(
nullptr
!=
weights_
[
index
]
->
getWGrad
())
weights_
[
index
]
->
getW
()
->
getHeight
());
weights_
[
index
]
->
getWGrad
()
->
reshape
(
weights_
[
index
]
->
getWGrad
()
->
reshape
(
weights_
[
index
]
->
getWGrad
()
->
getWidth
(),
weights_
[
index
]
->
getWGrad
()
->
getWidth
(),
weights_
[
index
]
->
getWGrad
()
->
getHeight
());
weights_
[
index
]
->
getWGrad
()
->
getHeight
());
++
index
;
++
index
;
}
}
biases_
->
getWGrad
()
->
reshape
(
if
(
nullptr
!=
biases_
->
getWGrad
())
biases_
->
getWGrad
()
->
width_
,
biases_
->
getWGrad
()
->
height_
);
biases_
->
getWGrad
()
->
reshape
(
biases_
->
getWGrad
()
->
width_
,
biases_
->
getW
()
->
reshape
(
biases_
->
getWGrad
()
->
height_
);
biases_
->
getW
()
->
width_
,
biases_
->
getW
()
->
height_
);
if
(
nullptr
!=
biases_
->
getW
())
biases_
->
getW
()
->
reshape
(
biases_
->
getW
()
->
width_
,
biases_
->
getW
()
->
height_
);
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
return
true
;
return
true
;
}
}
size_t
Conv3DLayer
::
getSize
()
{
size_t
Conv3DLayer
::
getSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
// imgSizeH_.clear();
// imgSizeH_.clear();
...
@@ -59,22 +57,19 @@ size_t Conv3DLayer::getSize() {
...
@@ -59,22 +57,19 @@ size_t Conv3DLayer::getSize() {
N_
.
clear
();
N_
.
clear
();
size_t
layerSize
=
0
;
size_t
layerSize
=
0
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
outputW_
.
push_back
(
outputSize
(
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
true
));
padding_
[
i
],
stride_
[
i
],
true
));
outputH_
.
push_back
(
outputSize
(
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
true
));
imgSizeH_
[
i
],
filterSizeY_
[
i
],
outputD_
.
push_back
(
outputSize
(
paddingY_
[
i
],
strideY_
[
i
],
true
));
imgSizeD_
[
i
],
filterSizeZ_
[
i
],
paddingZ_
[
i
],
strideZ_
[
i
],
true
));
outputD_
.
push_back
(
outputSize
(
imgSizeD_
[
i
],
filterSizeZ_
[
i
],
N_
.
push_back
(
outputD_
[
i
]
*
outputH_
[
i
]
*
outputW_
[
i
]);
paddingZ_
[
i
],
strideZ_
[
i
],
true
));
CHECK
(
layerSize
==
0
||
N_
[
i
]
*
size_t
(
numFilters_
)
==
layerSize
);
layerSize
+=
N_
[
i
]
*
numFilters_
;
N_
.
push_back
(
outputD_
[
i
]
*
outputH_
[
i
]
*
outputW_
[
i
]);
CHECK
(
layerSize
==
0
||
N_
[
i
]
*
size_t
(
numFilters_
)
==
layerSize
);
layerSize
+=
N_
[
i
]
*
numFilters_
;
}
}
getOutput
().
setFrameHeight
(
outputH_
[
0
]);
getOutput
().
setFrameHeight
(
outputH_
[
0
]);
getOutput
().
setFrameWidth
(
outputW_
[
0
]);
getOutput
().
setFrameWidth
(
outputW_
[
0
]);
...
@@ -88,38 +83,46 @@ void Conv3DLayer::forward(PassType passType) {
...
@@ -88,38 +83,46 @@ void Conv3DLayer::forward(PassType passType) {
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
outWidth
=
getSize
();
int
outWidth
=
getSize
();
resetOutput
(
batchSize
,
outWidth
);
resetOutput
(
batchSize
,
outWidth
);
const
MatrixPtr
outMat
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
REGISTER_TIMER_INFO
(
"FwdConv3D"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"FwdConv3D"
,
getName
().
c_str
());
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
int
width
=
inMat
->
getWidth
();
const
MatrixPtr
&
outMat
=
getOutputValue
();
int
M
=
M_
[
i
];
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
int
K
=
K_
[
i
];
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
colBuf_
->
vol2Col
(
inMat
->
getData
()
+
n
*
width
,
channels_
[
i
],
colBuf_
->
vol2Col
(
inMat
->
getData
()
+
n
*
inMat
->
getStride
(),
imgSizeD_
[
i
],
imgSizeH_
[
i
],
imgSizeW_
[
i
],
channels_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
imgSizeD_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
imgSizeH_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
]);
imgSizeW_
[
i
],
filterSizeZ_
[
i
],
real
*
outData
=
outMat
->
getData
()
+
n
*
outWidth
;
filterSizeY_
[
i
],
MatrixPtr
outMatSub
=
filterSize_
[
i
],
Matrix
::
create
(
outData
,
groups_
[
i
]
*
M
,
N
,
false
,
useGpu_
);
strideZ_
[
i
],
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
strideY_
[
i
],
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
M
,
M
);
stride_
[
i
],
MatrixPtr
in
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
paddingZ_
[
i
],
MatrixPtr
out
=
outMatSub
->
subMatrix
(
g
*
M
,
M
);
paddingY_
[
i
],
out
->
mul
(
*
wMatSub
,
*
in
,
1.0
,
0.0
);
padding_
[
i
]);
}
real
*
outData
=
outMat
->
getData
()
+
n
*
outMat
->
getStride
();
MatrixPtr
outMatSub
=
Matrix
::
create
(
outData
,
groups_
[
i
]
*
M
,
N
,
false
,
useGpu_
);
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
M
,
M
);
MatrixPtr
in
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
out
=
outMatSub
->
subMatrix
(
g
*
M
,
M
);
out
->
mul
(
*
wMatSub
,
*
in
,
1.0
,
1.0
);
}
}
}
}
}
if
(
nullptr
!=
this
->
biasParameter_
)
{
if
(
nullptr
!=
this
->
biasParameter_
)
{
REGISTER_TIMER_INFO
(
"FwBiasTimer"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"FwBiasTimer"
,
getName
().
c_str
());
this
->
addBias
();
this
->
addBias
();
}
}
forwardActivation
();
forwardActivation
();
}
}
...
@@ -128,20 +131,20 @@ void Conv3DLayer::backward(const UpdateCallback &callback) {
...
@@ -128,20 +131,20 @@ void Conv3DLayer::backward(const UpdateCallback &callback) {
backwardActivation
();
backwardActivation
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
if
(
biases_
&&
biases_
->
getWGrad
())
{
bpropBiases
();
bpropBiases
();
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
REGISTER_TIMER_INFO
(
"BwdConv3D"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"BwdConv3D"
,
getName
().
c_str
());
if
(
weights_
[
i
]
->
getWGrad
())
{
if
(
weights_
[
i
]
->
getWGrad
())
{
bpropWeights
(
i
);
bpropWeights
(
i
);
}
}
if
(
this
->
needGradient_
)
{
if
(
getInputGrad
(
i
)
)
{
bpropData
(
i
);
bpropData
(
i
);
}
}
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
...
@@ -149,28 +152,36 @@ void Conv3DLayer::bpropWeights(int i) {
...
@@ -149,28 +152,36 @@ void Conv3DLayer::bpropWeights(int i) {
int
M
=
M_
[
i
];
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
int
K
=
K_
[
i
];
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
int
width
=
inMat
->
getWidth
();
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
wGradMat
=
weights_
[
i
]
->
getWGrad
();
MatrixPtr
wGradMat
=
weights_
[
i
]
->
getWGrad
();
real
*
outGradData
=
getOutputGrad
()
->
getData
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
colBuf_
->
vol2Col
(
inMat
->
getData
()
+
n
*
width
,
channels_
[
i
],
colBuf_
->
vol2Col
(
inMat
->
getData
()
+
n
*
inMat
->
getStride
(),
imgSizeD_
[
i
],
imgSizeH_
[
i
],
imgSizeW_
[
i
],
channels_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
imgSizeD_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
imgSizeH_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
]);
imgSizeW_
[
i
],
outGradData
+=
n
*
getOutputGrad
()
->
getWidth
();
filterSizeZ_
[
i
],
MatrixPtr
outGradSub
=
filterSizeY_
[
i
],
Matrix
::
create
(
outGradData
,
groups_
[
i
]
*
M
,
N
,
false
,
useGpu_
);
filterSize_
[
i
],
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
strideZ_
[
i
],
MatrixPtr
inMatSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
strideY_
[
i
],
MatrixPtr
outG
=
outGradSub
->
subMatrix
(
g
*
M
,
M
);
stride_
[
i
],
MatrixPtr
wGradSub
=
wGradMat
->
subMatrix
(
g
*
M
,
M
);
paddingZ_
[
i
],
wGradSub
->
mul
(
*
outG
,
*
(
inMatSub
->
getTranspose
()),
1.0
,
1.0
);
paddingY_
[
i
],
}
padding_
[
i
]);
real
*
outGradData
=
getOutputGrad
()
->
getData
()
+
n
*
getOutputGrad
()
->
getStride
();
MatrixPtr
outGradSub
=
Matrix
::
create
(
outGradData
,
groups_
[
i
]
*
M
,
N
,
false
,
useGpu_
);
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
inMatSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
outG
=
outGradSub
->
subMatrix
(
g
*
M
,
M
);
MatrixPtr
wGradSub
=
wGradMat
->
subMatrix
(
g
*
M
,
M
);
wGradSub
->
mul
(
*
outG
,
*
(
inMatSub
->
getTranspose
()),
1.0
,
1.0
);
}
}
}
}
}
...
@@ -180,45 +191,54 @@ void Conv3DLayer::bpropData(int i) {
...
@@ -180,45 +191,54 @@ void Conv3DLayer::bpropData(int i) {
int
K
=
K_
[
i
];
int
K
=
K_
[
i
];
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
real
*
outGradData
=
getOutputGrad
()
->
getData
();
real
*
preGradData
=
getInputGrad
(
i
)
->
getData
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
outGradData
+=
n
*
getOutputGrad
()
->
getWidth
();
real
*
outGradData
=
preGradData
+=
n
*
getInputGrad
(
i
)
->
getWidth
();
getOutputGrad
()
->
getData
()
+
n
*
getOutputGrad
()
->
getStride
();
MatrixPtr
outGradSub
=
real
*
preGradData
=
Matrix
::
create
(
outGradData
,
M
*
groups_
[
i
],
N
,
false
,
useGpu_
);
getInputGrad
(
i
)
->
getData
()
+
n
*
getInputGrad
(
i
)
->
getStride
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
outGradSub
=
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
M
,
M
);
Matrix
::
create
(
outGradData
,
M
*
groups_
[
i
],
N
,
false
,
useGpu_
);
MatrixPtr
outG
=
outGradSub
->
subMatrix
(
g
*
M
,
M
);
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
inGradMatSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
M
,
M
);
inGradMatSub
->
mul
(
*
(
wMatSub
->
getTranspose
()),
*
outG
,
1.0
,
0.0
);
MatrixPtr
outG
=
outGradSub
->
subMatrix
(
g
*
M
,
M
);
}
MatrixPtr
inGradMatSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
colBuf_
->
col2Vol
(
preGradData
,
channels_
[
i
],
inGradMatSub
->
mul
(
*
(
wMatSub
->
getTranspose
()),
*
outG
,
1.0
,
0.0
);
imgSizeD_
[
i
],
imgSizeH_
[
i
],
imgSizeW_
[
i
],
}
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
colBuf_
->
col2Vol
(
preGradData
,
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
channels_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
],
imgSizeD_
[
i
],
1.0
,
1.0
);
imgSizeH_
[
i
],
imgSizeW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
],
1.0
,
1.0
);
}
}
}
}
void
Conv3DLayer
::
bpropBiases
()
{
void
Conv3DLayer
::
bpropBiases
()
{
MatrixPtr
outGradMat
=
getOutputGrad
();
MatrixPtr
outGradMat
=
getOutputGrad
();
if
(
this
->
sharedBiases_
)
{
if
(
this
->
sharedBiases_
)
{
biases_
->
getWGrad
()
->
collectSharedBias
(
*
outGradMat
,
1.0
f
);
biases_
->
getWGrad
()
->
collectSharedBias
(
*
outGradMat
,
1.0
f
);
}
else
{
}
else
{
biases_
->
getWGrad
()
->
collectBias
(
*
outGradMat
,
1.0
f
);
biases_
->
getWGrad
()
->
collectBias
(
*
outGradMat
,
1.0
f
);
}
}
}
}
void
Conv3DLayer
::
addBias
()
{
void
Conv3DLayer
::
addBias
()
{
MatrixPtr
outMat
=
getOutputValue
();
MatrixPtr
outMat
=
getOutputValue
();
if
(
this
->
sharedBiases_
)
{
if
(
this
->
sharedBiases_
)
{
outMat
->
addSharedBias
(
*
(
biases_
->
getW
()),
1.0
f
);
outMat
->
addSharedBias
(
*
(
biases_
->
getW
()),
1.0
f
);
}
else
{
}
else
{
outMat
->
addBias
(
*
(
biases_
->
getW
()),
1.0
f
);
outMat
->
addBias
(
*
(
biases_
->
getW
()),
1.0
f
);
}
}
}
}
...
...
paddle/gserver/layers/DeConv3DLayer.cpp
浏览文件 @
c792ef7d
...
@@ -12,43 +12,42 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,43 +12,42 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "DeConv3DLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Stat.h"
#include "DeConv3DLayer.h"
namespace
paddle
{
namespace
paddle
{
REGISTER_LAYER
(
deconv3d
,
DeConv3DLayer
);
REGISTER_LAYER
(
deconv3d
,
DeConv3DLayer
);
#define DECONV_OUTPUT_SIZE(IN_SIZE, STRID, PAD, KSIZE) \
#define DECONV_OUTPUT_SIZE(IN_SIZE, STRID, PAD, KSIZE) \
(((IN_SIZE) - 1) * (STRID) -
2 * (PAD) + (KSIZE))
(((IN_SIZE)-1) * (STRID)-
2 * (PAD) + (KSIZE))
bool
DeConv3DLayer
::
init
(
const
LayerMap
&
layerMap
,
bool
DeConv3DLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
const
ParameterMap
&
parameterMap
)
{
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
// for Deconv, the dimension of Kernel is
// for Deconv, the dimension of Kernel is
// channel * output * depth * height * weigth
// channel * output * depth * height * weigth
// Matrix storage format: (output * depth * height * weigth) x channel
// Matrix storage format: (output * depth * height * weigth) x channel
for
(
int
index
=
0
;
index
<
config_
.
inputs
().
size
();
++
index
)
{
for
(
int
index
=
0
;
index
<
config_
.
inputs
().
size
();
++
index
)
{
M_
.
push_back
(
filterChannels_
[
index
]);
M_
.
push_back
(
filterChannels_
[
index
]);
K_
.
push_back
(
K_
.
push_back
(
filterPixels_
[
index
]
*
(
numFilters_
/
groups_
[
index
]));
filterPixels_
[
index
]
*
(
numFilters_
/
groups_
[
index
]));
if
(
weights_
[
index
]
->
getW
())
weights_
[
index
]
->
getW
()
->
reshape
(
weights_
[
index
]
->
getW
()
->
reshape
(
filterPixels_
[
index
]
*
numFilters_
,
filterPixels_
[
index
]
*
numFilters_
,
filterChannels_
[
index
]);
filterChannels_
[
index
]);
if
(
weights_
[
index
]
->
getWGrad
())
weights_
[
index
]
->
getWGrad
()
->
reshape
(
weights_
[
index
]
->
getWGrad
()
->
reshape
(
filterPixels_
[
index
]
*
numFilters_
,
filterPixels_
[
index
]
*
numFilters_
,
filterChannels_
[
index
]);
filterChannels_
[
index
]);
}
}
biases_
->
getWGrad
()
->
reshape
(
if
(
biases_
->
getWGrad
())
biases_
->
getWGrad
()
->
width_
,
biases_
->
getWGrad
()
->
height_
);
biases_
->
getWGrad
()
->
reshape
(
biases_
->
getWGrad
()
->
width_
,
biases_
->
getW
()
->
reshape
(
biases_
->
getWGrad
()
->
height_
);
biases_
->
getW
()
->
width_
,
biases_
->
getW
()
->
height_
);
if
(
biases_
->
getW
())
biases_
->
getW
()
->
reshape
(
biases_
->
getW
()
->
width_
,
biases_
->
getW
()
->
height_
);
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
return
true
;
return
true
;
}
}
size_t
DeConv3DLayer
::
getSize
()
{
size_t
DeConv3DLayer
::
getSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
// imgSizeH_.clear();
// imgSizeH_.clear();
...
@@ -64,18 +63,12 @@ size_t DeConv3DLayer::getSize() {
...
@@ -64,18 +63,12 @@ size_t DeConv3DLayer::getSize() {
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
outputW_
.
push_back
(
outputW_
.
push_back
(
DECONV_OUTPUT_SIZE
(
DECONV_OUTPUT_SIZE
(
imgSizeW_
[
i
],
stride_
[
i
],
padding_
[
i
],
filterSize_
[
i
]));
imgSizeW_
[
i
],
stride_
[
i
],
outputH_
.
push_back
(
DECONV_OUTPUT_SIZE
(
padding_
[
i
],
filterSize_
[
i
]));
imgSizeH_
[
i
],
strideY_
[
i
],
paddingY_
[
i
],
filterSizeY_
[
i
]));
outputH_
.
push_back
(
outputD_
.
push_back
(
DECONV_OUTPUT_SIZE
(
DECONV_OUTPUT_SIZE
(
imgSizeD_
[
i
],
strideZ_
[
i
],
paddingZ_
[
i
],
filterSizeZ_
[
i
]));
imgSizeH_
[
i
],
strideY_
[
i
],
paddingY_
[
i
],
filterSizeY_
[
i
]));
outputD_
.
push_back
(
DECONV_OUTPUT_SIZE
(
imgSizeD_
[
i
],
strideZ_
[
i
],
paddingZ_
[
i
],
filterSizeZ_
[
i
]));
No_
.
push_back
(
outputD_
[
i
]
*
outputH_
[
i
]
*
outputW_
[
i
]);
No_
.
push_back
(
outputD_
[
i
]
*
outputH_
[
i
]
*
outputW_
[
i
]);
N_
.
push_back
(
imgSizeD_
[
i
]
*
imgSizeH_
[
i
]
*
imgSizeW_
[
i
]);
N_
.
push_back
(
imgSizeD_
[
i
]
*
imgSizeH_
[
i
]
*
imgSizeW_
[
i
]);
CHECK
(
layerSize
==
0
||
N_
[
i
]
*
size_t
(
numFilters_
)
==
layerSize
);
CHECK
(
layerSize
==
0
||
N_
[
i
]
*
size_t
(
numFilters_
)
==
layerSize
);
...
@@ -96,32 +89,37 @@ void DeConv3DLayer::forward(PassType passType) {
...
@@ -96,32 +89,37 @@ void DeConv3DLayer::forward(PassType passType) {
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
REGISTER_TIMER_INFO
(
"FwdDeConv3D"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"FwdDeConv3D"
,
getName
().
c_str
());
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
int
width
=
inMat
->
getWidth
();
int
M
=
M_
[
i
];
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
int
K
=
K_
[
i
];
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
]
,
N
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
real
*
inData
=
inMat
->
getData
()
+
n
*
width
;
real
*
inData
=
inMat
->
getData
()
+
n
*
inMat
->
getStride
();
real
*
colBufData
=
colBuf_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
MatrixPtr
inMatSub
=
Matrix
::
create
(
inData
,
M
,
N
,
false
,
useGpu_
);
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
inMatSub
=
MatrixPtr
colBufDataSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
Matrix
::
create
(
inData
,
M
,
N
,
false
,
useGpu_
);
colBufDataSub
->
mul
(
*
wMatSub
,
*
inMatSub
,
1.0
,
0.0
);
MatrixPtr
colBufDataSub
=
inData
+=
M
*
N
;
Matrix
::
create
(
colBufData
,
K
,
N
,
false
,
useGpu_
);
colBufDataSub
->
mul
(
*
wMatSub
,
*
inMatSub
,
1.0
,
0.0
);
colBufData
+=
K
*
N
;
inData
+=
M
*
N
;
}
}
colBuf_
->
col2Vol
(
outMat
->
getData
()
+
n
*
outMat
->
getWidth
(),
colBuf_
->
col2Vol
(
outMat
->
getData
()
+
n
*
outMat
->
getStride
(),
numFilters_
,
outputD_
[
i
],
outputH_
[
i
],
outputW_
[
i
],
numFilters_
,
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
outputD_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
outputH_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
],
1.0
,
1.0
);
outputW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
],
1.0
,
1.0
);
}
}
}
}
if
(
nullptr
!=
this
->
biasParameter_
)
{
if
(
nullptr
!=
this
->
biasParameter_
)
{
...
@@ -134,63 +132,69 @@ void DeConv3DLayer::forward(PassType passType) {
...
@@ -134,63 +132,69 @@ void DeConv3DLayer::forward(PassType passType) {
void
DeConv3DLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
void
DeConv3DLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
backwardActivation
();
int
batchSize
=
getOutputGrad
()
->
getHeight
();
int
batchSize
=
getOutputGrad
()
->
getHeight
();
int
outputWidth
=
getOutputGrad
()
->
getWidth
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
if
(
biases_
&&
biases_
->
getWGrad
())
{
bpropBiases
();
bpropBiases
();
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
int
M
=
M_
[
i
];
if
(
weights_
[
i
]
->
getWGrad
()
||
this
->
needGradient_
)
{
int
N
=
N_
[
i
];
int
M
=
M_
[
i
];
int
K
=
K_
[
i
];
int
N
=
N_
[
i
];
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
int
K
=
K_
[
i
];
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
REGISTER_TIMER_INFO
(
"BwdDeConv3D"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"BwdDeConv3D"
,
getName
().
c_str
());
if
(
weights_
[
i
]
->
getWGrad
()
||
this
->
needGradient_
)
{
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
colBuf_
->
vol2Col
(
getOutputGrad
()
->
getData
()
+
n
*
outputWidth
,
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
numFilters_
,
outputD_
[
i
],
outputH_
[
i
],
outputW_
[
i
],
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
colBuf_
->
vol2Col
(
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
getOutputGrad
()
->
getData
()
+
n
*
getOutputGrad
()
->
getStride
(),
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
]);
numFilters_
,
}
outputD_
[
i
],
if
(
weights_
[
i
]
->
getWGrad
())
{
outputH_
[
i
],
real
*
inData
=
inMat
->
getData
()
+
n
*
inMat
->
getWidth
();;
outputW_
[
i
],
real
*
wGradData
=
weights_
[
i
]
->
getWGrad
()
->
getData
();
filterSizeZ_
[
i
],
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
filterSizeY_
[
i
],
MatrixPtr
colBufDataSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
filterSize_
[
i
],
MatrixPtr
inMatSub
=
Matrix
::
create
(
strideZ_
[
i
],
inData
,
M
,
N
,
false
,
useGpu_
);
strideY_
[
i
],
MatrixPtr
wGradMatSub
=
Matrix
::
create
(
stride_
[
i
],
wGradData
,
K
,
M
,
false
,
useGpu_
);
paddingZ_
[
i
],
wGradMatSub
->
mul
(
*
colBufDataSub
,
paddingY_
[
i
],
*
(
inMatSub
->
getTranspose
()),
1.0
,
1.0
);
padding_
[
i
]);
wGradData
+=
K
*
M
;
if
(
weights_
[
i
]
->
getWGrad
())
{
inData
+=
M
*
N
;
real
*
inData
=
inMat
->
getData
()
+
n
*
inMat
->
getStride
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
colBufDataSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
wGradMatSub
=
weights_
[
i
]
->
getWGrad
()
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
inMatSub
=
Matrix
::
create
(
inData
,
M
,
N
,
false
,
useGpu_
);
wGradMatSub
->
mul
(
*
colBufDataSub
,
*
(
inMatSub
->
getTranspose
()),
1.0
,
1.0
);
inData
+=
M
*
N
;
}
}
}
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
getInputGrad
(
i
))
{
}
real
*
preGrad
=
if
(
this
->
needGradient_
)
{
getInputGrad
(
i
)
->
getData
()
+
n
*
getInputGrad
(
i
)
->
getStride
();
real
*
preGrad
=
getInputGrad
(
i
)
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
w
=
weights_
[
i
]
->
getW
()
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
w
=
weights_
[
i
]
->
getW
()
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
outGradMat
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
outGradMat
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
inGradMatSub
=
MatrixPtr
inGradMatSub
=
Matrix
::
create
(
Matrix
::
create
(
preGrad
,
M
,
N
,
false
,
useGpu_
);
preGrad
,
M
,
N
,
false
,
useGpu_
);
inGradMatSub
->
mul
(
*
(
w
->
getTranspose
()),
*
outGradMat
,
1.0
,
1.0
);
inGradMatSub
->
mul
(
*
(
w
->
getTranspose
()),
*
outGradMat
,
1.0
,
0.0
)
;
preGrad
+=
M
*
N
;
preGrad
+=
M
*
N
;
}
}
}
}
}
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
}
}
void
DeConv3DLayer
::
bpropWeights
(
int
i
)
{}
void
DeConv3DLayer
::
bpropWeights
(
int
i
)
{
}
void
DeConv3DLayer
::
bpropData
(
int
i
)
{}
void
DeConv3DLayer
::
bpropData
(
int
i
)
{
}
void
DeConv3DLayer
::
bpropBiases
()
{
void
DeConv3DLayer
::
bpropBiases
()
{
MatrixPtr
outGradMat
=
getOutputGrad
();
const
MatrixPtr
&
outGradMat
=
getOutputGrad
();
if
(
this
->
sharedBiases_
)
{
if
(
this
->
sharedBiases_
)
{
biases_
->
getWGrad
()
->
collectSharedBias
(
*
outGradMat
,
1.0
f
);
biases_
->
getWGrad
()
->
collectSharedBias
(
*
outGradMat
,
1.0
f
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录