提交 c7460060 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #4765 from reyoung/feature/change_vardesc_protobuf

Update VarDesc design
...@@ -16,16 +16,23 @@ The computation graph is constructed by Data Node and Operation Node. The concep ...@@ -16,16 +16,23 @@ The computation graph is constructed by Data Node and Operation Node. The concep
## Definition of VarDesc ## Definition of VarDesc
A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it. A VarDesc should have a name, and value. The are two kinds of variable type in compile time, they are `LoDTensor` and `SelectedRows`.
```proto ```proto
message VarDesc { message VarDesc {
required string name = 1; required string name = 1;
optional LoDTensorDesc lod_tensor = 2; enum VarType {
LOD_TENSOR = 0;
SELECTED_ROWS = 1;
}
required VarType type = 2;
optional LoDTensorDesc lod_desc = 3;
optional TensorDesc selected_rows_desc = 4;
optional bool persistable = 5 [ default = false ];
} }
``` ```
## Definition of LodTensorDesc ## Definition of TensorDesc
```proto ```proto
enum DataType { enum DataType {
...@@ -38,87 +45,25 @@ enum DataType { ...@@ -38,87 +45,25 @@ enum DataType {
FP64 = 6; FP64 = 6;
} }
message LoDTensorDesc { message TensorDesc {
required DataType data_type = 1; required DataType data_type = 1;
repeated int32 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480] repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
optional int32 lod_level = 3 [default=0];
} }
``` ```
## Definition of Variable in Python A TensorDesc describes `SelectedRows` and `LoDTensor`. For details of `SelectedRows`, please reference [`SelectedRows`](./selected_rows.md).
In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class `Variable` in python to help create and manage Variable.
```python
image = Variable(dims=[-1, 640, 480])
# fc1 and fc2 are both Variable
fc1 = layer.fc(input=image, output_size=10)
fc2 = layer.fc(input=fc1, output_size=20)
```
### what should class `Variable` Have
1. `name`.a name of string type is used to mark the value of the Variable.
1. `initializer`. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a initialize method to help add the init operator.
1. `operator`. Variable should record which operator produce itself. The reaon is:
- we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.
In PaddlePaddle, we use Block to describe Computation Graph, so in the code we will use Block but not Graph.
```python
import VarDesc
import LoDTensorDesc
import framework
def AddInitialOperator(variable, initializer):
# add an initialize Operator to block to init this Variable
class Variable(object):
def __init__(self, name, dims, type, initializer):
self._block = get_default_block()
self._name = name
self.op = None
tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
_var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
self._var = framework.CreateVar(_var_desc)
self._block.add_var(self)
# add initial op according to initializer ## Definition of LodTensorDesc
if initializer is not None:
AddInitialOperator(self, initializer)
def dims(self):
return self._var.dims()
def data_type(self):
return self._var.data_type()
def to_proto(self): ```proto
pass message LoDTensorDesc {
required TensorDesc tensor = 1;
optional int lod_level = 2;
}
``` ```
Then we can use this Variable to create a fc layer in Python. A LoDTensorDesc contains a tensor and a lod_level.
```python ## Definition of Variable in Python
import paddle as pd
def flatten_size(X, num_flatten_dims):
prod = 1 # of last num_flatten_dims
for i in xrange(num_flatten_dims):
prod = prod * X.dims[-i-1]
return prod
def layer.fc(X, output_size, num_flatten_dims):
W = Variable(pd.random_uniform(), type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
b = Variable(pd.random_uniform(), type=FP32, dims=[output_size])
out = Variable(type=FP32)
y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
pd.InferShape(y)
return out
x = Variable(dims=[-1, 640, 480])
y = layer.fc(x, output_size=100)
z = layer.fc(y, output_size=200)
paddle.eval(targets=[z], ...) For Variable in Python, please reference [`Python API`](./python_api.md).
print(z)
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册