未验证 提交 c701e114 编写于 作者: C cifar10 提交者: GitHub

add mlu stack kernel (#43423)

上级 9b031026
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class StackMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto x = ctx.MultiInput<Tensor>("X");
auto* y = ctx.Output<Tensor>("Y");
int axis = ctx.Attr<int>("axis");
if (axis < 0) axis += (x[0]->dims().size() + 1);
int num = static_cast<int>(x.size());
PADDLE_ENFORCE_GT(
num, 0,
platform::errors::InvalidArgument("number of input Tensor <= 0"));
std::vector<MLUCnnlTensorDesc> x_descs;
std::vector<cnnlTensorDescriptor_t> x_raw_descs;
std::vector<const void*> x_ptrs;
for (int i = 0; i < num; i++) {
if (x[i]->dims().size() != 0) {
std::vector<int64_t> in_dims = phi::vectorize(x[i]->dims());
in_dims.insert(in_dims.begin() + axis, 1);
x_descs.emplace_back(MLUCnnlTensorDesc(in_dims.size(), in_dims.data(),
ToCnnlDataType<T>()));
} else {
int input_dims = 1;
x_descs.emplace_back(
MLUCnnlTensorDesc(1, &input_dims, ToCnnlDataType<T>()));
}
x_raw_descs.push_back(x_descs.back().get());
x_ptrs.push_back(GetBasePtr(x[i]));
}
y->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc y_desc(*y);
MLUCnnl::Concat(ctx, num, axis, x_raw_descs.data(), x_ptrs.data(),
y_desc.get(), GetBasePtr(y));
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_MLU_KERNEL(
stack, paddle::operators::StackMLUKernel<int64_t>,
paddle::operators::StackMLUKernel<int>,
paddle::operators::StackMLUKernel<float>,
paddle::operators::StackMLUKernel<paddle::platform::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append('..')
from op_test import OpTest
import paddle.fluid as fluid
import paddle
paddle.enable_static()
class TestStackOpBase(OpTest):
def initDefaultParameters(self):
self.num_inputs = 4
self.input_dim = (5, 6, 7)
self.axis = 0
def initParameters(self):
pass
def get_x_names(self):
x_names = []
for i in range(self.num_inputs):
x_names.append('x{}'.format(i))
return x_names
def setUp(self):
self.initDefaultParameters()
self.initParameters()
self.op_type = 'stack'
self.set_mlu()
self.init_dtype()
self.x = []
for i in range(self.num_inputs):
self.x.append(
np.random.random(size=self.input_dim).astype(self.dtype))
tmp = []
x_names = self.get_x_names()
for i in range(self.num_inputs):
tmp.append((x_names[i], self.x[i]))
self.inputs = {'X': tmp}
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
self.attrs = {'axis': self.axis}
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.__class__.no_need_check_grad = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
class TestStackOp1(TestStackOpBase):
def initParameters(self):
self.num_inputs = 16
class TestStackOp2(TestStackOpBase):
def initParameters(self):
self.num_inputs = 20
class TestStackOp3(TestStackOpBase):
def initParameters(self):
self.axis = -1
class TestStackOp4(TestStackOpBase):
def initParameters(self):
self.axis = -4
class TestStackOp5(TestStackOpBase):
def initParameters(self):
self.axis = 1
class TestStackOp6(TestStackOpBase):
def initParameters(self):
self.axis = 3
class TestStackOpINT32(TestStackOpBase):
def init_dtype(self):
self.dtype = np.int32
class TestStackOpINT64(TestStackOpBase):
def init_dtype(self):
self.dtype = np.int64
class TestStackOpHalf(TestStackOpBase):
def init_dtype(self):
self.dtype = np.float16
class API_test(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float32')
data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float32')
data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float32')
result_stack = paddle.stack([data1, data2, data3], axis=0)
place = paddle.MLUPlace(0)
exe = fluid.Executor(place)
input1 = np.random.random([1, 2]).astype('float32')
input2 = np.random.random([1, 2]).astype('float32')
input3 = np.random.random([1, 2]).astype('float32')
result, = exe.run(feed={
"data1": input1,
"data2": input2,
"data3": input3
},
fetch_list=[result_stack])
expected_result = np.stack([input1, input2, input3], axis=0)
self.assertTrue(np.allclose(expected_result, result))
def test_single_tensor_error(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = paddle.rand([2, 3])
self.assertRaises(TypeError, paddle.stack, x)
class API_DygraphTest(unittest.TestCase):
def test_out(self):
data1 = np.array([[1.0, 2.0]]).astype("float32")
data2 = np.array([[3.0, 4.0]]).astype("float32")
data3 = np.array([[5.0, 6.0]]).astype("float32")
with fluid.dygraph.guard(place=paddle.MLUPlace(0)):
x1 = fluid.dygraph.to_variable(data1)
x2 = fluid.dygraph.to_variable(data2)
x3 = fluid.dygraph.to_variable(data3)
result = paddle.stack([x1, x2, x3])
result_np = result.numpy()
expected_result = np.stack([data1, data2, data3])
self.assertTrue(np.allclose(expected_result, result_np))
with fluid.dygraph.guard(place=paddle.MLUPlace(0)):
y1 = fluid.dygraph.to_variable(data1)
result = paddle.stack([y1], axis=0)
result_np_2 = result.numpy()
expected_result_2 = np.stack([data1], axis=0)
self.assertTrue(np.allclose(expected_result_2, result_np_2))
def test_single_tensor_error(self):
with fluid.dygraph.guard(place=paddle.MLUPlace(0)):
x = paddle.to_tensor([1, 2, 3])
self.assertRaises(Exception, paddle.stack, x)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册