未验证 提交 c563609a 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference]Add scale TRT converter unittest. (#35225)

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller

* add_scale_teller
上级 cae050e8
......@@ -563,7 +563,19 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
}
}
if (op_type == "scale") {
auto scale_inputs = desc.Inputs();
if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
if (desc.Input("ScaleTensor").size() >= 1) {
return false;
}
}
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
if (!with_dynamic_shape && x_shape.size() == 1) return false;
}
if (op_type == "slice") {
if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
!desc.HasAttr("ends") || !desc.HasAttr("decrease_axis")) {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertScaleTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)
def generate_weight1(attrs: List[Dict[str, Any]]):
return np.ones([1]).astype(np.float32)
for num_input in [0, 1]:
for dims in [1, 2, 3, 4]:
for batch in [1, 2]:
for scale in [0.1, 1.0]:
for bias in [0.0, 1.2]:
for bias_after_scale in [False, True]:
self.num_input = num_input
self.dims = dims
dics = [{
"scale": scale,
"bias": bias,
"bias_after_scale": bias_after_scale
}, {}]
dics_intput = [{
"X": ["scale_input"],
"ScaleTensor": ["ScaleTensor"],
}, {
"X": ["scale_input"]
}]
dics_intputs = [{
"ScaleTensor": TensorConfig(
data_gen=partial(generate_weight1,
dics))
}, {}]
ops_config = [{
"op_type": "scale",
"op_inputs": dics_intput[num_input],
"op_outputs": {
"Out": ["scale_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights=dics_intputs[num_input],
inputs={
"scale_input": TensorConfig(
data_gen=partial(generate_input1,
dics, batch))
},
outputs=["scale_out"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"scale_input": [1, 3, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"scale_input": [9, 3, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"scale_input": [1, 3, 48, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"scale_input": [1, 3, 24]}
self.dynamic_shape.max_input_shape = {"scale_input": [9, 6, 48]}
self.dynamic_shape.opt_input_shape = {"scale_input": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"scale_input": [1, 24]}
self.dynamic_shape.max_input_shape = {"scale_input": [9, 48]}
self.dynamic_shape.opt_input_shape = {"scale_input": [1, 24]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"scale_input": [24]}
self.dynamic_shape.max_input_shape = {"scale_input": [48]}
self.dynamic_shape.opt_input_shape = {"scale_input": [24]}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(program_config.weights) == 1:
return True
return False
self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT,
"INPUT ScaleTensor and Shape NOT SUPPORT")
def teller2(program_config, predictor_config):
if self.dims == 1 and self.dynamic_shape.min_input_shape == 0:
return True
return False
self.add_skip_case(teller2, SkipReasons.TRT_NOT_SUPPORT,
"INPUT DIM EQUAL TO 1 OF STATIC SHAPE NOT SUPPORT")
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册