Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c2ad3815
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c2ad3815
编写于
6月 20, 2018
作者:
Y
Yu Yang
提交者:
GitHub
6月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11560 from JiayiFeng/doc_non_layer_api
Doc of non layer api
上级
0d2dd1a7
457d81bb
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
646 addition
and
112 deletion
+646
-112
python/paddle/fluid/average.py
python/paddle/fluid/average.py
+19
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+59
-12
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+568
-100
未找到文件。
python/paddle/fluid/average.py
浏览文件 @
c2ad3815
...
...
@@ -36,6 +36,25 @@ def _is_number_or_matrix_(var):
class
WeightedAverage
(
object
):
"""
Calculate weighted average.
The average calculating is accomplished via Python totally.
They do not change Paddle's Program, nor do anything to
modify NN model's configuration. They are completely
wrappers of Python functions.
Examples:
.. code-block:: python
avg = fluid.average.WeightedAverage()
avg.add(value=2.0, weight=1)
avg.add(value=4.0, weight=2)
avg.eval()
# The result is 3.333333333.
# For (2.0 * 1 + 4.0 * 2) / (1 + 2) = 3.333333333
"""
def
__init__
(
self
):
warnings
.
warn
(
"The %s is deprecated, please use fluid.metrics.Accuracy instead."
%
...
...
python/paddle/fluid/backward.py
浏览文件 @
c2ad3815
...
...
@@ -147,7 +147,7 @@ def _addup_repetitive_outputs_(op_descs):
else
:
if
len
(
renamed_vars
[
var_name
])
==
1
:
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
# rename original var_name
renamed_vars
[
var_name
][
0
]
=
new_name
...
...
@@ -155,7 +155,7 @@ def _addup_repetitive_outputs_(op_descs):
_rename_arg_
(
pending_sum_ops
,
var_name
,
new_name
)
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
op_desc
.
rename_output
(
var_name
,
new_name
)
renamed_vars
[
var_name
].
append
(
new_name
)
...
...
@@ -435,18 +435,65 @@ def _get_stop_gradients_(program):
def
append_backward
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
"""
Append backward part to main_program
Append backward part to main_program
.
Args:
loss(Variable): The variable generated by cost function.
parameter_list(list[string]): Parameters that need to be updated by
optimizer. If None, it means all parameters need to be updated.
no_grad_set(set): Variables that have no gradients in Block 0.
All variables with `step_gradient=True` from all blocks will be
automatically added.
A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to
specify its forwrd part. The backward part is generated automatically
according to the forward part by this function.
Return:
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
In most cases, users do not need to invoke this function manually. It
will be automatically invoked by the optimizer's `minimize` function.
Args:
loss(Variable): The loss variable of the network.
parameter_list(list[string]|None): Names of parameters that need
to be updated by optimizers.
If it is None, all parameters
will be updated.
Default: None
no_grad_set(set|None): Variables in the Block 0 whose gradients
should be ignored. All variables with
`step_gradient=True` from all blocks will
be automatically added into this set.
Default: None
callbacks(list[callable object]|None): The callbacks are used for
doing some custom jobs during
backward part building. All
callable objects in it will
be invoked once each time a
new gradient operator is added
into the program. The callable
object must has two input
parameters: 'block' and 'context'.
The 'block' is the block which
the new gradient operator will
be added to. The 'context' is a
map, whose keys are gradient
variable names and values are
corresponding original variables.
In addition to this, the 'context'
has another special key-value pair:
the key is string '__current_op_desc__'
and the value is the op_desc of the
gradient operator who has just
triggered the callable object.
Returns:
list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the
value is gradient variable.
Raises:
AssertionError: If `loss` is not an instance of Variable.
Examples:
.. code-block:: python
# network configuration code
# ...
avg_loss = fluid.layers.mean(loss)
param_grad_list = fluid.backward.append_backward(loss=avg_loss)
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
...
...
python/paddle/fluid/io.py
浏览文件 @
c2ad3815
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录