Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c22f7fcd
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c22f7fcd
编写于
10月 26, 2017
作者:
Z
zhouxiao-coder
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add positive_negative_pair_op evaluator
上级
5d536bcc
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
257 addition
and
0 deletion
+257
-0
paddle/operators/positive_negative_pair_op.cc
paddle/operators/positive_negative_pair_op.cc
+104
-0
paddle/operators/positive_negative_pair_op.h
paddle/operators/positive_negative_pair_op.h
+92
-0
python/paddle/v2/framework/tests/test_positive_negative_pair_op.py
...ddle/v2/framework/tests/test_positive_negative_pair_op.py
+61
-0
未找到文件。
paddle/operators/positive_negative_pair_op.cc
0 → 100644
浏览文件 @
c22f7fcd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/positive_negative_pair_op.h"
namespace
paddle
{
namespace
operators
{
class
PositiveNegativePairOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Score"
),
"Input(Score) of PositiveNegativePairOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) of PositiveNegativePairOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"QueryId"
),
"Input(QueryId) of PositiveNegativePairOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PositivePair"
),
"Output(PositivePair) of PositiveNegativePairOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"NegativePair"
),
"Output(NegativePair) of PositiveNegativePairOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"NeutralPair"
),
"Output(NeutralPair) of PositiveNegativePairOp should not be null."
);
auto
score_dim
=
ctx
->
GetInputDim
(
"Score"
);
auto
label_dim
=
ctx
->
GetInputDim
(
"Label"
);
auto
query_dim
=
ctx
->
GetInputDim
(
"QueryId"
);
PADDLE_ENFORCE
(
score_dim
==
label_dim
,
"Shape of Score must be the same as Label's shape."
);
PADDLE_ENFORCE
(
query_dim
==
label_dim
,
"Shape of QueryId must be the same as Label's shape."
);
PADDLE_ENFORCE
(
query_dim
==
label_dim
,
"Shape of QueryId must be the same as Label's shape."
);
ctx
->
SetOutputDim
(
"PositivePair"
,
{
1
});
ctx
->
SetOutputDim
(
"NegativePair"
,
{
1
});
ctx
->
SetOutputDim
(
"NeutralPair"
,
{
1
});
}
protected:
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Score"
)
->
type
());
}
};
class
PositiveNegativePairOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
PositiveNegativePairOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Score"
,
"(Tensor, float) Output score of the network on <query, document> "
"pair."
);
AddInput
(
"Label"
,
"(Tensor, float or int) Label of current <query, document> pair."
);
AddInput
(
"QueryId"
,
"(Tensor, int) query id of current <query, document> pair."
);
AddOutput
(
"PositivePair"
,
"(float) Number of positive ranking pairs, i.e. the pairs of "
"documents that are ranked correctly"
);
AddOutput
(
"NegativePair"
,
"(float) Number of negative ranking pairs, i.e. the pairs of "
"documents that are ranked incorrectly"
);
AddOutput
(
"NeutralPair"
,
"(float) Number of neutral ranking pairs. A pair of document "
"(doc#1, doc#2) is classified as
\"
neutral
\"
if their scores are "
"the same."
);
AddComment
(
R"DOC(
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model performance. Its outputs are usually
further summarized as positive-negative-ratio: PositivePair/NegativePair.
Its 3 inputs can be viewd as a series of 3 tuples: (predicition score, golden label, query id).
For each unique query id, a list of <score, label> are collected and positive/negative pairs are accumulated to its output.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
positive_negative_pair
,
ops
::
PositiveNegativePairOp
,
ops
::
PositiveNegativePairOpMaker
);
REGISTER_OP_CPU_KERNEL
(
positive_negative_pair
,
ops
::
PositiveNegativePairKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/positive_negative_pair_op.h
0 → 100644
浏览文件 @
c22f7fcd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_map>
#include <vector>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
Place
,
typename
T
>
class
PositiveNegativePairKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
score_t
=
context
.
Input
<
Tensor
>
(
"Score"
);
auto
label_t
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
query_t
=
context
.
Input
<
Tensor
>
(
"QueryId"
);
auto
positive_t
=
context
.
Output
<
Tensor
>
(
"PositivePair"
);
auto
negative_t
=
context
.
Output
<
Tensor
>
(
"NegativePair"
);
auto
neutral_t
=
context
.
Output
<
Tensor
>
(
"NeutralPair"
);
auto
score
=
score_t
->
data
<
float
>
();
auto
label
=
label_t
->
data
<
float
>
();
auto
query
=
query_t
->
data
<
int
>
();
T
*
positive
=
positive_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
negative
=
negative_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
neutral
=
neutral_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
score_dim
=
score_t
->
dims
();
PADDLE_ENFORCE_GE
(
score_dim
.
size
(),
1L
,
"Rank of Score must be at least 1."
);
PADDLE_ENFORCE_LE
(
score_dim
.
size
(),
2L
,
"Rank of Score must be less or equal to 2."
);
auto
batch_size
=
score_dim
[
0
];
auto
width
=
score_dim
.
size
()
>
1
?
score_dim
[
1
]
:
1
;
// construct document instances for each query: Query => List[<score#0,
// label#0>, ...]
std
::
unordered_map
<
int
,
std
::
vector
<
std
::
pair
<
float
,
float
>>>
predictions
;
for
(
auto
i
=
0
;
i
<
batch_size
;
++
i
)
{
if
(
predictions
.
find
(
query
[
i
])
==
predictions
.
end
())
{
predictions
.
emplace
(
std
::
make_pair
(
query
[
i
],
std
::
vector
<
std
::
pair
<
float
,
float
>>
()));
}
predictions
[
query
[
i
]].
push_back
(
std
::
make_pair
(
score
[
i
*
width
+
width
-
1
],
label
[
i
]));
}
// for each query, accumulate pair counts
T
pos
=
0
,
neg
=
0
,
neu
=
0
;
auto
evaluate_one_list
=
[
&
pos
,
&
neg
,
&
neu
](
std
::
vector
<
std
::
pair
<
float
,
float
>>
vec
)
{
for
(
auto
ite1
=
vec
.
begin
();
ite1
!=
vec
.
end
();
++
ite1
)
{
for
(
auto
ite2
=
ite1
+
1
;
ite2
!=
vec
.
end
();
++
ite2
)
{
if
(
ite1
->
second
==
ite2
->
second
)
{
// labels are equal, ignore.
continue
;
}
if
(
ite1
->
first
==
ite2
->
first
)
{
++
neu
;
}
(
ite1
->
first
-
ite2
->
first
)
*
(
ite1
->
second
-
ite2
->
second
)
>
0.0
?
pos
++
:
neg
++
;
}
}
};
for
(
auto
prediction
:
predictions
)
{
evaluate_one_list
(
prediction
.
second
);
}
*
positive
=
pos
;
*
negative
=
neg
;
*
neutral
=
neu
;
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_positive_negative_pair_op.py
0 → 100644
浏览文件 @
c22f7fcd
import
unittest
import
itertools
import
numpy
as
np
from
op_test
import
OpTest
def
py_pnpair_op
(
score
,
label
,
query
):
# group by query id
predictions
=
{}
for
s
,
l
,
q
in
zip
(
score
,
label
,
query
):
if
type
(
s
)
is
list
:
s
=
s
[
-
1
]
q
=
q
[
0
]
if
q
not
in
predictions
:
predictions
[
q
]
=
[]
predictions
[
q
].
append
((
s
,
l
))
# accumulate statistics
pos
,
neg
,
neu
=
0
,
0
,
0
for
_
,
ranks
in
predictions
.
items
():
for
e1
,
e2
in
itertools
.
combinations
(
ranks
,
2
):
s1
,
s2
,
l1
,
l2
=
e1
[
0
][
0
],
e2
[
0
][
0
],
e1
[
1
][
0
],
e2
[
1
][
0
]
if
l1
==
l2
:
continue
if
s1
==
s2
:
neu
+=
1
elif
(
s1
-
s2
)
*
(
l1
-
l2
)
>
0
:
pos
+=
1
else
:
neg
+=
1
return
np
.
array
(
pos
).
astype
(
'float32'
),
np
.
array
(
neg
).
astype
(
'float32'
),
np
.
array
(
neu
).
astype
(
'float32'
)
class
TestPositiveNegativePairOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'positive_negative_pair'
batch_size
=
20
max_query_id
=
5
score
=
np
.
random
.
normal
(
size
=
(
batch_size
,
1
)).
astype
(
'float32'
)
label
=
np
.
random
.
normal
(
size
=
(
batch_size
,
1
)).
astype
(
'float32'
)
query
=
np
.
array
(
[
np
.
random
.
randint
(
max_query_id
)
for
i
in
range
(
batch_size
)])
query
=
np
.
reshape
(
query
,
newshape
=
(
batch_size
,
1
)).
astype
(
'int32'
)
pos
,
neg
,
neu
=
py_pnpair_op
(
score
,
label
,
query
)
self
.
inputs
=
{}
self
.
inputs
=
{
'Score'
:
score
,
'Label'
:
label
,
'QueryId'
:
query
}
self
.
outputs
=
{
'PositivePair'
:
pos
,
'NegativePair'
:
neg
,
'NeutralPair'
:
neu
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录