Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c06b4483
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c06b4483
编写于
5月 14, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/exec_strategy
上级
e5281b3c
8c7d2e29
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
76 addition
and
30 deletion
+76
-30
paddle/fluid/operators/softmax_mkldnn_op.cc
paddle/fluid/operators/softmax_mkldnn_op.cc
+54
-19
paddle/gserver/layers/PriorBox.cpp
paddle/gserver/layers/PriorBox.cpp
+22
-11
未找到文件。
paddle/fluid/operators/softmax_mkldnn_op.cc
浏览文件 @
c06b4483
...
...
@@ -53,25 +53,60 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
"Softmax input and output dimensions should match"
);
// Same memory descriptor to be used for input and output
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
// Currently only supports NC data format
// TODO(jczaja-intel): support more formats
auto
softmax_md
=
MKLDNNMemDesc
({
softmax_tz
},
memory
::
f32
,
memory
::
format
::
nc
);
// Normalization is made after innermost dimension eg. C out of NC
auto
softmax_desc
=
softmax_forward
::
desc
(
prop_kind
::
forward_scoring
,
softmax_md
,
1
/*dim: C*/
);
// create memory primitives
auto
softmax_src_memory
=
memory
({
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
auto
softmax_dst_memory
=
memory
({
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
T
*>
(
output_data
)));
auto
softmax_prim_desc
=
softmax_forward
::
primitive_desc
(
softmax_desc
,
mkldnn_engine
);
auto
softmax
=
softmax_forward
(
softmax_prim_desc
,
softmax_src_memory
,
softmax_dst_memory
);
std
::
vector
<
primitive
>
pipeline
{
softmax
};
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Each MKLDNN operator may have diffrent hashing function
auto
gethash
=
[](
memory
::
dims
&
operand_dims
)
{
return
std
::
string
(
std
::
to_string
(
operand_dims
[
0
])
+
"-"
+
std
::
to_string
(
operand_dims
[
1
]));
};
const
std
::
string
key
=
gethash
(
softmax_tz
);
const
std
::
string
key_softmax_p
=
key
+
"@softmax_p"
;
const
std
::
string
key_softmax_src_mem_p
=
key
+
"@softmax_src_mem_p"
;
const
std
::
string
key_softmax_dst_mem_p
=
key
+
"@softmax_dst_mem_p"
;
std
::
shared_ptr
<
void
>
softmax_p
=
dev_ctx
.
GetBlob
(
key_softmax_p
);
if
(
softmax_p
==
nullptr
)
{
// Currently only NC data format is supported
auto
softmax_md
=
MKLDNNMemDesc
({
softmax_tz
},
memory
::
f32
,
memory
::
format
::
nc
);
// Normalization is made after innermost dimension eg. C out of NC
auto
softmax_desc
=
softmax_forward
::
desc
(
prop_kind
::
forward_scoring
,
softmax_md
,
1
/*dim: C*/
);
// create memory primitives
auto
softmax_src_memory_p
=
std
::
make_shared
<
memory
>
(
memory
::
primitive_desc
{
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
dev_ctx
.
SetBlob
(
key_softmax_src_mem_p
,
softmax_src_memory_p
);
auto
softmax_dst_memory_p
=
std
::
make_shared
<
memory
>
(
memory
::
primitive_desc
{
softmax_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
output_data
));
dev_ctx
.
SetBlob
(
key_softmax_dst_mem_p
,
softmax_dst_memory_p
);
auto
softmax_forward_pd
=
std
::
make_shared
<
softmax_forward
::
primitive_desc
>
(
softmax_desc
,
mkldnn_engine
);
softmax_p
=
std
::
make_shared
<
softmax_forward
>
(
*
(
softmax_forward_pd
.
get
()),
*
(
static_cast
<
memory
*>
(
softmax_src_memory_p
.
get
())),
*
(
static_cast
<
memory
*>
(
softmax_dst_memory_p
.
get
())));
dev_ctx
.
SetBlob
(
key_softmax_p
,
softmax_p
);
}
else
{
// Primitives already exist
auto
src_memory_p
=
std
::
static_pointer_cast
<
memory
>
(
dev_ctx
.
GetBlob
(
key_softmax_src_mem_p
));
PADDLE_ENFORCE
(
src_memory_p
!=
nullptr
,
"Fail to find softmax src mem_p in device context"
);
auto
dst_memory_p
=
std
::
static_pointer_cast
<
memory
>
(
dev_ctx
.
GetBlob
(
key_softmax_dst_mem_p
));
PADDLE_ENFORCE
(
dst_memory_p
!=
nullptr
,
"Fail to find softmax dst mem_p in device context"
);
src_memory_p
->
set_data_handle
(
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
dst_memory_p
->
set_data_handle
(
output_data
);
}
std
::
vector
<
primitive
>
pipeline
{
*
(
static_cast
<
softmax_forward
::
primitive
*>
(
softmax_p
.
get
()))};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
...
paddle/gserver/layers/PriorBox.cpp
浏览文件 @
c06b4483
...
...
@@ -28,7 +28,7 @@ namespace paddle {
*/
class
PriorBoxLayer
:
public
Layer
{
public:
public:
// NOLINT
explicit
PriorBoxLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
...
...
@@ -36,7 +36,7 @@ public:
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
{}
protected:
protected:
// NOLINT
int
numPriors_
;
std
::
vector
<
int
>
minSize_
;
std
::
vector
<
int
>
maxSize_
;
...
...
@@ -109,11 +109,18 @@ void PriorBoxLayer::forward(PassType passType) {
real
boxWidth
=
minSize
;
real
boxHeight
=
minSize
;
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
aspectRatio_
.
size
();
r
++
)
{
real
ar
=
aspectRatio_
[
r
];
boxWidth
=
minSize
*
sqrt
(
ar
);
boxHeight
=
minSize
/
sqrt
(
ar
);
// first prior: aspect_ratio == 1.0, compatible to old logic
tmpPtr
[
idx
++
]
=
(
centerX
-
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
-
boxHeight
/
2.
)
/
imageHeight
;
tmpPtr
[
idx
++
]
=
(
centerX
+
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
+
boxHeight
/
2.
)
/
imageHeight
;
// set the variance.
for
(
int
t
=
0
;
t
<
4
;
t
++
)
tmpPtr
[
idx
++
]
=
variance_
[
t
];
if
(
maxSize_
.
size
()
>
0
)
{
// square prior with size sqrt(minSize * maxSize)
real
maxSize
=
maxSize_
[
s
];
boxWidth
=
boxHeight
=
sqrt
(
minSize
*
maxSize
);
tmpPtr
[
idx
++
]
=
(
centerX
-
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
-
boxHeight
/
2.
)
/
imageHeight
;
tmpPtr
[
idx
++
]
=
(
centerX
+
boxWidth
/
2.
)
/
imageWidth
;
...
...
@@ -122,10 +129,14 @@ void PriorBoxLayer::forward(PassType passType) {
for
(
int
t
=
0
;
t
<
4
;
t
++
)
tmpPtr
[
idx
++
]
=
variance_
[
t
];
}
if
(
maxSize_
.
size
()
>
0
)
{
// square prior with size sqrt(minSize * maxSize)
real
maxSize
=
maxSize_
[
s
];
boxWidth
=
boxHeight
=
sqrt
(
minSize
*
maxSize
);
// priors with different aspect ratios
for
(
size_t
r
=
0
;
r
<
aspectRatio_
.
size
();
r
++
)
{
real
ar
=
aspectRatio_
[
r
];
if
(
fabs
(
ar
-
1.0
)
<
1e-6
)
{
continue
;
}
boxWidth
=
minSize
*
sqrt
(
ar
);
boxHeight
=
minSize
/
sqrt
(
ar
);
tmpPtr
[
idx
++
]
=
(
centerX
-
boxWidth
/
2.
)
/
imageWidth
;
tmpPtr
[
idx
++
]
=
(
centerY
-
boxHeight
/
2.
)
/
imageHeight
;
tmpPtr
[
idx
++
]
=
(
centerX
+
boxWidth
/
2.
)
/
imageWidth
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录