未验证 提交 bc827307 编写于 作者: B baoachun 提交者: GitHub

add mul_gru_fuse_pass ut (#37772)

* add mul_gru_fuse_pass ut

* update ut

* update ut

* update ut timeout setting

* update ut
上级 1d31764e
......@@ -31,6 +31,22 @@ namespace ir {
class Node;
MulGRUFusePass::MulGRUFusePass() {
AddOpCompat(OpCompat("mul"))
.AddInput("X")
.IsTensor()
.End()
.AddInput("Y")
.IsTensor()
.End()
.AddOutput("Out")
.IsTensor()
.End()
.AddAttr("x_num_col_dims")
.IsNumEQ(1)
.End()
.AddAttr("y_num_col_dims")
.IsNumEQ(1)
.End();
AddOpCompat(OpCompat("gru"))
.AddInput("Input")
.IsTensor()
......@@ -58,10 +74,10 @@ MulGRUFusePass::MulGRUFusePass() {
.IsTensor()
.End()
.AddAttr("activation")
.IsStringIn({"sigmoid", "tanh", "relu", "identity"})
.IsStringIn({"sigmoid", "tanh"})
.End()
.AddAttr("gate_activation")
.IsStringIn({"sigmoid", "tanh", "relu", "identity"})
.IsStringIn({"sigmoid", "tanh"})
.End()
.AddAttr("is_reverse")
.IsType<bool>()
......@@ -70,22 +86,6 @@ MulGRUFusePass::MulGRUFusePass() {
.IsType<bool>()
.IsOptional()
.End();
AddOpCompat(OpCompat("mul"))
.AddInput("X")
.IsTensor()
.End()
.AddInput("Y")
.IsTensor()
.End()
.AddOutput("Out")
.IsTensor()
.End()
.AddAttr("x_num_col_dims")
.IsNumEQ(1)
.End()
.AddAttr("y_num_col_dims")
.IsNumEQ(1)
.End();
}
FCGRUFusePass::FCGRUFusePass() {
......
......@@ -8,7 +8,7 @@ file(GLOB TEST_TRT_CONVERTER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_trt_co
string(REPLACE ".py" "" TEST_TRT_CONVERTER "${TEST_TRT_CONVERTER}")
# Only for cpu(mkl + openblas)
set(TEST_INFERENCE_CPU_UT "test_mul_lstm_fuse_pass")
set(TEST_INFERENCE_CPU_UT "test_mul_lstm_fuse_pass" "test_mul_gru_fuse_pass")
foreach(CPU_UT ${TEST_INFERENCE_CPU_UT})
list(REMOVE_ITEM TEST_INFERENCE_IR_PASSES ${CPU_UT})
......@@ -66,6 +66,7 @@ if (NOT WITH_MKLDNN AND NOT TENSORRT_FOUND AND NOT WITH_GPU)
endforeach()
set_tests_properties(test_mul_lstm_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mul_gru_fuse_pass PROPERTIES TIMEOUT 300)
endif()
if(WITH_GPU AND TENSORRT_FOUND)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
from functools import reduce
class TestMulGruFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_config(self, draw):
x_col = draw(st.sampled_from([1]))
y_col = draw(st.sampled_from([1]))
activation = draw(st.sampled_from(['sigmoid', 'tanh']))
is_reverse = draw(st.booleans())
has_origin_mode = draw(st.booleans())
origin_mode = False
gate_activation = draw(st.sampled_from(['sigmoid', 'tanh']))
batch_size = draw(st.integers(min_value=1, max_value=40))
def generate_input():
shape = [batch_size, 128, 6, 120]
return np.full(shape, 0.001).astype(np.float32)
def generate_weight(shape):
return np.full(shape, 0.0001).astype(np.float32)
im2sequence_op = OpConfig(
type="im2sequence",
inputs={"X": ["input_data"]},
outputs={"Out": ["seq_out"]},
attrs={
"kernels": [6, 1],
"out_stride": [1, 1],
"paddings": [0, 0, 0, 0],
"strides": [1, 1]
})
mul_op = OpConfig(
type="mul",
inputs={"X": ["seq_out"],
"Y": ["mul_weight"]},
outputs={"Out": ["mul_out"]},
attrs={"x_num_col_dims": x_col,
"y_num_col_dims": y_col})
if has_origin_mode:
gru_op = OpConfig(
type="gru",
inputs={
"Input": ["mul_out"],
"Weight": ["gru_weight"],
"Bias": ["gru_bias"]
},
outputs={
"BatchGate": ["batch_gate"],
"BatchHidden": ["batch_hidden"],
"BatchResetHiddenPrev": ["batch_reset"],
"Hidden": ["hidden"]
},
attrs={
'activation': activation,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'is_test': True,
'origin_mode': origin_mode
})
else:
gru_op = OpConfig(
type="gru",
inputs={
"Input": ["mul_out"],
"Weight": ["gru_weight"],
"Bias": ["gru_bias"]
},
outputs={
"BatchGate": ["batch_gate"],
"BatchHidden": ["batch_hidden"],
"BatchResetHiddenPrev": ["batch_reset"],
"Hidden": ["hidden"]
},
attrs={
'activation': activation,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'is_test': True
})
model_net = [im2sequence_op, mul_op, gru_op]
program_config = ProgramConfig(
ops=model_net,
weights={
"mul_weight":
TensorConfig(data_gen=partial(generate_weight, [768, 600])),
"gru_weight":
TensorConfig(data_gen=partial(generate_weight, [200, 600])),
"gru_bias":
TensorConfig(data_gen=partial(generate_weight, [1, 600]))
},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input))
},
outputs=["hidden"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config()
yield config, ["im2sequence", "fusion_gru"], (1e-5, 1e-5)
def test(self):
self.run_and_statis(quant=False, passes=["mul_gru_fuse_pass"])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册