未验证 提交 b77fa1d9 编写于 作者: C caozhou 提交者: GitHub

[Auto Parallel] Support Iterable dataset for auto parallel (#45518)

* support iterable dataset for auto parallel

* add split_data proto

* fix unittest bug

* fix recompute bug

* update cmake
上级 500f070d
...@@ -343,6 +343,7 @@ message DistributedStrategy { ...@@ -343,6 +343,7 @@ message DistributedStrategy {
optional bool is_fl_ps_mode = 39 [ default = false ]; optional bool is_fl_ps_mode = 39 [ default = false ];
optional bool with_coordinator = 40 [ default = false ]; optional bool with_coordinator = 40 [ default = false ];
optional bool qat = 41 [ default = false ]; optional bool qat = 41 [ default = false ];
optional bool split_data = 42 [ default = true ];
optional RecomputeConfig recompute_configs = 101; optional RecomputeConfig recompute_configs = 101;
optional AMPConfig amp_configs = 102; optional AMPConfig amp_configs = 102;
......
...@@ -14,10 +14,13 @@ ...@@ -14,10 +14,13 @@
import abc import abc
import numpy as np import numpy as np
from functools import wraps
import paddle import paddle
from .utils import to_list from .utils import to_list
from paddle.fluid.layers.utils import flatten from paddle.fluid.layers.utils import flatten
from paddle.io import DataLoader, BatchSampler, IterableDataset from paddle.io import DataLoader, BatchSampler, IterableDataset
from paddle.fluid.dataloader.batch_sampler import _InfiniteIterableSampler
from paddle.fluid.dataloader.dataloader_iter import _DatasetKind, default_collate_fn, default_convert_fn from paddle.fluid.dataloader.dataloader_iter import _DatasetKind, default_collate_fn, default_convert_fn
...@@ -29,33 +32,41 @@ class DistributedDataLoader(metaclass=abc.ABCMeta): ...@@ -29,33 +32,41 @@ class DistributedDataLoader(metaclass=abc.ABCMeta):
epochs=1, epochs=1,
data_parallel_world_size=None, data_parallel_world_size=None,
data_parallel_rank=None, data_parallel_rank=None,
drop_last=False): drop_last=False,
split_data=True):
if isinstance(dataset, IterableDataset): if isinstance(dataset, IterableDataset):
raise TypeError("IterableDataset is not supported.") self.dataset_kind = _DatasetKind.ITER
else: else:
self.dataset_kind = _DatasetKind.MAP self.dataset_kind = _DatasetKind.MAP
self.dataset = dataset self.dataset = dataset
self.epochs = epochs self.epochs = epochs
self.drop_lost = drop_last self.drop_lost = drop_last
self.data_parallel_world_size = data_parallel_world_size
self.data_parallel_rank = data_parallel_rank
self.split_data = split_data
if batch_size is None: if batch_size is None:
self.batch_size = None self.batch_size = None
self.batch_sampler = None self.batch_sampler = None
else: else:
if data_parallel_world_size is not None: if data_parallel_world_size is not None:
assert batch_size % data_parallel_world_size == 0, \ for dp_world_size in data_parallel_world_size:
"'batch_size' must be divisible by data parallel size" if dp_world_size is not None:
assert batch_size % dp_world_size == 0, \
"batch_size must be divisible by dp_world_size value {}".format(str(dp_world_size))
self.batch_size = batch_size self.batch_size = batch_size
self.batch_sampler = BatchSampler(dataset, if isinstance(dataset, IterableDataset):
batch_size=batch_size, self.batch_sampler = _InfiniteIterableSampler(
shuffle=False, dataset, batch_size)
drop_last=drop_last) else:
self.batch_sampler = BatchSampler(dataset,
batch_size=batch_size,
shuffle=False,
drop_last=drop_last)
self.auto_collate_batch = self.batch_sampler is not None self.auto_collate_batch = self.batch_sampler is not None
self.sampler_iter = iter(self.index_sampler) self.sampler_iter = iter(self.index_sampler)
self.dp_world_size = 1 if data_parallel_world_size is None else data_parallel_world_size
self.dp_rank = 0 if data_parallel_rank is None else data_parallel_rank
@abc.abstractmethod @abc.abstractmethod
def __iter__(self): def __iter__(self):
...@@ -73,7 +84,7 @@ class DistributedDataLoader(metaclass=abc.ABCMeta): ...@@ -73,7 +84,7 @@ class DistributedDataLoader(metaclass=abc.ABCMeta):
if self.dataset_kind == _DatasetKind.MAP: if self.dataset_kind == _DatasetKind.MAP:
return list(range(len(self.dataset))) return list(range(len(self.dataset)))
else: else:
raise TypeError("Only support datasets in map-style.") return _InfiniteIterableSampler(self.dataset, 1)
class NonIterableGeneratorLoader(DistributedDataLoader): class NonIterableGeneratorLoader(DistributedDataLoader):
...@@ -88,7 +99,8 @@ class NonIterableGeneratorLoader(DistributedDataLoader): ...@@ -88,7 +99,8 @@ class NonIterableGeneratorLoader(DistributedDataLoader):
collate_fn=None, collate_fn=None,
data_parallel_world_size=None, data_parallel_world_size=None,
data_parallel_rank=None, data_parallel_rank=None,
drop_last=False): drop_last=False,
split_data=True):
self.feed_list = feed_list self.feed_list = feed_list
self.places = places self.places = places
self.steps_per_epoch = steps_per_epoch self.steps_per_epoch = steps_per_epoch
...@@ -96,7 +108,7 @@ class NonIterableGeneratorLoader(DistributedDataLoader): ...@@ -96,7 +108,7 @@ class NonIterableGeneratorLoader(DistributedDataLoader):
super(NonIterableGeneratorLoader, super(NonIterableGeneratorLoader,
self).__init__(dataset, batch_size, epochs, self).__init__(dataset, batch_size, epochs,
data_parallel_world_size, data_parallel_rank, data_parallel_world_size, data_parallel_rank,
drop_last) drop_last, split_data)
if self.auto_collate_batch: if self.auto_collate_batch:
self.collate_fn = collate_fn or default_collate_fn self.collate_fn = collate_fn or default_collate_fn
...@@ -115,17 +127,22 @@ class NonIterableGeneratorLoader(DistributedDataLoader): ...@@ -115,17 +127,22 @@ class NonIterableGeneratorLoader(DistributedDataLoader):
return self return self
def __next__(self): def __next__(self):
if self._cur_step < self._steps: if not self._steps:
self._cur_step += 1
elif self._cur_step < self._steps:
self._cur_step += 1 self._cur_step += 1
else: else:
self._inner_dataloader.reset() self._inner_dataloader.reset()
self.sampler_iter = iter(self.index_sampler)
raise StopIteration raise StopIteration
def _infer_steps(self): def _infer_steps(self):
if self.steps_per_epoch is not None: if self.steps_per_epoch is not None:
return self.steps_per_epoch return self.steps_per_epoch
try: try:
if self.batch_size is None: if isinstance(self.dataset, IterableDataset):
steps_per_epoch = None
elif self.batch_size is None:
steps_per_epoch = len(self.dataset) steps_per_epoch = len(self.dataset)
else: else:
steps_per_epoch = len(self.dataset) // self.batch_size steps_per_epoch = len(self.dataset) // self.batch_size
...@@ -138,26 +155,61 @@ class NonIterableGeneratorLoader(DistributedDataLoader): ...@@ -138,26 +155,61 @@ class NonIterableGeneratorLoader(DistributedDataLoader):
def _create_inner_dataloader(self): def _create_inner_dataloader(self):
def sample_data_generator(): def sample_data_generator():
for indices in self.sampler_iter: while True:
assert len(indices) % self.dp_world_size == 0, \ try:
"Please set batch_size to be divisible by data parallel size" indices = next(self.sampler_iter)
n = len(indices) // self.dp_world_size batch = self.dataset_fetcher.fetch(indices)
cur_indices = [ if batch is None: break
indices[i:i + n] for i in range(0, len(indices), n)
] except StopIteration:
batch = self.dataset_fetcher.fetch(cur_indices[self.dp_rank]) self.dataset_fetcher = _DatasetKind.create_fetcher(
yield batch[:len(self.feed_list)] self.dataset_kind, self.dataset,
self.auto_collate_batch, self.collate_fn,
self.drop_lost)
break
partial_data = []
for i, d in enumerate(batch[:len(self.feed_list)]):
array = np.array(d)
if not self.split_data:
partial_data.append(array)
elif self.dp_world_sizes[i] is not None:
partial_data.append(
np.split(array,
self.dp_world_sizes[i])[self.dp_ranks[i]])
else:
partial_data.append(array)
yield partial_data
def batch_data_generator(): def batch_data_generator():
for indices in self.sampler_iter: while True:
try:
indices = next(self.sampler_iter)
batch = self.dataset_fetcher.fetch(indices)
if batch is None: break
except StopIteration:
break
partial_data = [] partial_data = []
batch = self.dataset_fetcher.fetch(indices) for i, d in enumerate(batch[:len(self.feed_list)]):
for data in batch: array = np.array(d)
assert data.shape[0] % self.dp_world_size == 0, \ if not self.split_data:
"Please padding dataset's batch_size to be divisible by data parallel size" partial_data.append(array)
partial_data.append( elif self.dp_world_sizes[i] is not None:
np.split(data, self.dp_world_size)[self.dp_rank]) partial_data.append(
yield partial_data[:len(self.feed_list)] np.split(array,
self.dp_world_sizes[i])[self.dp_ranks[i]])
else:
partial_data.append(array)
yield partial_data
self.dp_world_sizes = [
1 for _ in range(len(self.feed_list))
] if self.data_parallel_world_size is None else self.data_parallel_world_size
self.dp_ranks = [
0 for _ in range(len(self.feed_list))
] if self.data_parallel_rank is None else self.data_parallel_rank
dataloader = paddle.fluid.io.DataLoader.from_generator( dataloader = paddle.fluid.io.DataLoader.from_generator(
feed_list=self.feed_list, capacity=70, iterable=False) feed_list=self.feed_list, capacity=70, iterable=False)
......
...@@ -233,8 +233,8 @@ class Engine: ...@@ -233,8 +233,8 @@ class Engine:
assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset." assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset."
batch_size = self._user_tuning_config["batch_size"] batch_size = self._user_tuning_config["batch_size"]
dataset = self._user_tuning_config["dataset"] dataset = self._user_tuning_config["dataset"]
dataset.dp_world_size = self._input_split_size dataset.dp_world_size = self.dp_world_sizes
dataset.dp_rank = self._input_split_rank dataset.dp_rank = self.dp_ranks
from .tuner.optimization_tuner import OptimizationTuner from .tuner.optimization_tuner import OptimizationTuner
self._optimization_tuner = OptimizationTuner(self._user_tuning_config, self._optimization_tuner = OptimizationTuner(self._user_tuning_config,
...@@ -272,8 +272,13 @@ class Engine: ...@@ -272,8 +272,13 @@ class Engine:
if var.name in block.vars: if var.name in block.vars:
feed_list.append(block.vars[var.name]) feed_list.append(block.vars[var.name])
self._input_split_size, self._input_split_rank = self._get_input_split_info( self.dp_world_sizes = []
feed_list[0], self._dist_contexts[mode]) self.dp_ranks = []
for feed_var in feed_list:
dp_world_size, dp_rank = self._get_input_split_info(
feed_var, self._dist_contexts[mode])
self.dp_world_sizes.append(dp_world_size)
self.dp_ranks.append(dp_rank)
def _parallel(self, mode, all_ranks): def _parallel(self, mode, all_ranks):
# Parallelize program based on the planner's results # Parallelize program based on the planner's results
...@@ -440,15 +445,23 @@ class Engine: ...@@ -440,15 +445,23 @@ class Engine:
for epoch in range(epochs): for epoch in range(epochs):
train_logs = {"epoch: {:d} ": epoch} train_logs = {"epoch: {:d} ": epoch}
for step, _ in enumerate(train_dataloader): for step, _ in enumerate(train_dataloader):
try:
outs = self._executor.run(self.main_program,
fetch_list=fetch_list,
use_program_cache=use_cache,
return_numpy=return_numpy)
except fluid.core.EOFException:
break
outs = self._executor.run(self.main_program,
fetch_list=fetch_list,
use_program_cache=use_cache,
return_numpy=return_numpy)
train_logs["step: {:d} "] = step train_logs["step: {:d} "] = step
if lr_scheduler is not None: if lr_scheduler is not None:
lr_scheduler.step() lr_scheduler.step()
train_logs["lr: {:5e} "] = self._lr_optimizer.get_lr() try:
train_logs["lr: {:5e} "] = self._lr_optimizer.get_lr()
except:
train_logs[
"lr: {:5e} "] = self._lr_optimizer._learning_rate.get_lr(
)
# inner fetches # inner fetches
if fetch_loss: if fetch_loss:
train_logs["loss: {:9f} "] = outs[0][0] train_logs["loss: {:9f} "] = outs[0][0]
...@@ -486,10 +499,13 @@ class Engine: ...@@ -486,10 +499,13 @@ class Engine:
for step, _ in enumerate(eval_dataloader): for step, _ in enumerate(eval_dataloader):
eval_logs = {"step: {:d} ": step} eval_logs = {"step: {:d} ": step}
outs = self._executor.run(self.main_program, try:
fetch_list=fetch_list, outs = self._executor.run(self.main_program,
use_program_cache=use_cache, fetch_list=fetch_list,
return_numpy=return_numpy) use_program_cache=use_cache,
return_numpy=return_numpy)
except fluid.core.EOFException:
break
# inner fetches # inner fetches
if fetch_loss: if fetch_loss:
eval_logs["loss: {:9f} "] = outs[0][0] eval_logs["loss: {:9f} "] = outs[0][0]
...@@ -534,10 +550,13 @@ class Engine: ...@@ -534,10 +550,13 @@ class Engine:
outputs = [] outputs = []
for step, _ in enumerate(test_dataloader): for step, _ in enumerate(test_dataloader):
predict_logs = {"step: {:d} ": step} predict_logs = {"step: {:d} ": step}
outs = self._executor.run(self.main_program, try:
fetch_list=fetch_list, outs = self._executor.run(self.main_program,
use_program_cache=use_cache, fetch_list=fetch_list,
return_numpy=return_numpy) use_program_cache=use_cache,
return_numpy=return_numpy)
except fluid.core.EOFException:
break
outputs.append(outs[:len(fetch_outputs)]) outputs.append(outs[:len(fetch_outputs)])
for i, out in enumerate(outs): for i, out in enumerate(outs):
predict_logs[fetch_map[fetch_list[i]] + ": {}"] = out predict_logs[fetch_map[fetch_list[i]] + ": {}"] = out
...@@ -586,8 +605,9 @@ class Engine: ...@@ -586,8 +605,9 @@ class Engine:
epochs, epochs,
steps_per_epoch, steps_per_epoch,
collate_fn, collate_fn,
data_parallel_world_size=self._input_split_size, data_parallel_world_size=self.dp_world_sizes,
data_parallel_rank=self._input_split_rank) data_parallel_rank=self.dp_ranks,
split_data=self.strategy.split_data)
# move read op from the end of program to the start of program # move read op from the end of program to the start of program
new_op_size = len(dist_main_block.ops) new_op_size = len(dist_main_block.ops)
...@@ -682,6 +702,8 @@ class Engine: ...@@ -682,6 +702,8 @@ class Engine:
self.model, "gpt" self.model, "gpt"
) and self.model.__class__.__name__ == 'GPTForPretraining': ) and self.model.__class__.__name__ == 'GPTForPretraining':
exact_ckpts = self.model.gpt.checkpoints exact_ckpts = self.model.gpt.checkpoints
else:
exact_ckpts = config["checkpoints"]
else: else:
exact_ckpts = config["checkpoints"] exact_ckpts = config["checkpoints"]
......
...@@ -1997,6 +1997,28 @@ class DistributedStrategy(object): ...@@ -1997,6 +1997,28 @@ class DistributedStrategy(object):
else: else:
print("WARNING: auto-search should have value of bool type") print("WARNING: auto-search should have value of bool type")
@property
def split_data(self):
"""
Indicating whether we split the data. If True, we split the data.
Default Value: True
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.split_data = True
"""
return self.strategy.split_data
@split_data.setter
def split_data(self, flag):
if isinstance(flag, bool):
self.strategy.split_data = flag
else:
print("WARNING: split_data should have value of bool type")
@property @property
def qat(self): def qat(self):
""" """
......
...@@ -72,4 +72,9 @@ if(WITH_DISTRIBUTE AND WITH_GPU) ...@@ -72,4 +72,9 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules(test_lr_grad_clip MODULES test_lr_grad_clip) py_test_modules(test_lr_grad_clip MODULES test_lr_grad_clip)
py_test_modules(test_quantization MODULES test_quantization) py_test_modules(test_quantization MODULES test_quantization)
py_test_modules(test_dist_matmul MODULES test_dist_matmul) py_test_modules(test_dist_matmul MODULES test_dist_matmul)
py_test_modules(test_iterable_dataset MODULES test_iterable_dataset ENVS
${dist_ENVS})
set_tests_properties(test_iterable_dataset
PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 80)
endif() endif()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import time
import tempfile
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine
from paddle.optimizer.lr import CosineAnnealingDecay
from paddle.fluid.dataloader.collate import default_collate_fn
paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 2
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10
paddle.seed(44)
class MyDataset(IterableDataset):
def __init__(self, num_samples):
super(MyDataset, self).__init__()
self.num_samples = num_samples
def __iter__(self):
for i in range(self.num_samples):
input = np.random.uniform(size=image_size).astype("float32")
label = np.random.randint(0, class_num - 1, dtype="int64")
yield input, label
class MyDataset1(Dataset):
def __init__(self, num_samples):
super(MyDataset1, self).__init__()
self.num_samples = num_samples
self.data = []
for i in range(self.num_samples):
input1 = np.random.uniform(size=image_size).astype("float32")
label1 = np.array(np.random.randint(0, class_num - 1,
dtype="int64"))
input2 = np.random.uniform(size=image_size).astype("float32")
label2 = np.array(np.random.randint(0, class_num - 1,
dtype="int64"))
input = np.stack((input1, input2))
label = np.stack((label1, label2))
self.data.append((input, label))
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
class MLPLayer(nn.Layer):
def __init__(self,
hidden_size=1024,
intermediate_size=4 * 1024,
dropout_ratio=0.1,
initializer_range=0.02):
super(MLPLayer, self).__init__()
d_model = hidden_size
dim_feedforward = intermediate_size
weight_attr = paddle.ParamAttr(
initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
bias_attr = None
self.linear0 = nn.Linear(d_model,
dim_feedforward,
weight_attr,
bias_attr=bias_attr)
self.linear1 = nn.Linear(dim_feedforward,
d_model,
weight_attr,
bias_attr=bias_attr)
self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
def forward(self, input):
out = auto.shard_op(self.norm, dist_attr={"process_mesh":
PP_MESH_0})(input)
out = self.linear0(out)
out = F.gelu(out, approximate=True)
out = auto.shard_op(self.linear1, dist_attr={"process_mesh":
PP_MESH_1})(out)
out = self.dropout(out)
out = self.linear2(out)
self.out = out
return out
def train(fetch):
mlp = MLPLayer(hidden_size=hidden_size,
intermediate_size=4 * hidden_size,
dropout_ratio=0.1,
initializer_range=0.02)
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
inputs_spec = InputSpec([batch_size, hidden_size], 'float32', 'x')
labels_spec = InputSpec([batch_size], 'int64', 'label')
dist_strategy = fleet.DistributedStrategy()
dist_strategy.semi_auto = True
dist_strategy.split_data = True
fleet.init(is_collective=True, strategy=dist_strategy)
# init engine
engine = Engine(mlp,
inputs_spec=inputs_spec,
labels_spec=labels_spec,
strategy=dist_strategy)
engine.prepare(optimizer, loss, metrics=paddle.metric.Accuracy())
# fetch
if fetch:
fetches = {'out': mlp.out}
else:
fetches = None
# train
train_dataset = MyDataset(batch_num * batch_size)
train_dataset1 = MyDataset1(batch_num)
engine.fit(train_dataset,
epochs=2,
batch_size=batch_size,
steps_per_epoch=batch_num,
fetches=fetches)
engine.fit(train_dataset1,
epochs=2,
batch_size=None,
steps_per_epoch=batch_num,
fetches=fetches)
# eval
eval_dataset = MyDataset(batch_size)
engine.evaluate(eval_dataset, batch_size, fetches=fetches)
# predict
test_dataset = MyDataset(batch_size)
engine.predict(test_dataset, batch_size, fetches=fetches)
# save
temp_dir = tempfile.TemporaryDirectory()
model_filename = os.path.join(temp_dir.name, 'mlp_inf')
engine.save(model_filename, training=False, mode='predict')
temp_dir.cleanup()
if __name__ == "__main__":
train(fetch=True)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import os
import sys
import shutil
import subprocess
from paddle.distributed.fleet.launch_utils import run_with_coverage
class TestEngineAPI(unittest.TestCase):
def test_engine_api(self):
file_dir = os.path.dirname(os.path.abspath(__file__))
launch_model_path = os.path.join(file_dir, "iterable_dataset.py")
if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
else:
coverage_args = []
tmp_dir = tempfile.TemporaryDirectory()
cmd = [sys.executable, "-u"] + coverage_args + [
"-m", "paddle.distributed.launch", "--devices", "0,1", "--log_dir",
tmp_dir.name, launch_model_path
]
process = subprocess.Popen(cmd)
process.wait()
self.assertEqual(process.returncode, 0)
tmp_dir.cleanup()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册