提交 b571a414 编写于 作者: Q qijun

Merge remote-tracking branch 'baidu/develop' into feature/add_v2_api_doc

......@@ -126,51 +126,57 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
def main():
paddle.init(use_gpu=False, trainer_count=1)
is_generating = True
# source and target dict dim.
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
# define network topology
cost = seqToseq_net(source_dict_dim, target_dict_dim)
parameters = paddle.parameters.create(cost)
# define optimize method and trainer
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=1e-3))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
# define data reader
feeding = {
'source_language_word': 0,
'target_language_word': 1,
'target_language_next_word': 2
}
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
batch_size=5)
# define event_handler callback
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
# start to train
trainer.train(
reader=wmt14_reader,
event_handler=event_handler,
num_passes=10000,
feeding=feeding)
# train the network
if not is_generating:
cost = seqToseq_net(source_dict_dim, target_dict_dim)
parameters = paddle.parameters.create(cost)
# define optimize method and trainer
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer)
# define data reader
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=8192),
batch_size=5)
# define event_handler callback
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost,
event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
# start to train
trainer.train(
reader=wmt14_reader, event_handler=event_handler, num_passes=2)
# generate a english sequence to french
else:
gen_creator = paddle.dataset.wmt14.test(dict_size)
gen_data = []
for item in gen_creator():
gen_data.append((item[0], ))
if len(gen_data) == 3:
break
beam_gen = seqToseq_net(source_dict_dim, target_dict_dim, is_generating)
parameters = paddle.dataset.wmt14.model()
trg_dict = paddle.dataset.wmt14.trg_dict(dict_size)
if __name__ == '__main__':
......
......@@ -25,6 +25,11 @@ namespace paddle {
* Input: a sequence
* If SequenceLevel = kNonseq:
* Output: a sequence containing only the last instance of the input sequence
* If stride_ > 0:
* Output: a shorten sequence. The operation of getting last instance of a
* sequence is independently performed on every slice of the input
* sequence, which is obtained by sliding a window with the window
* size set to stride_.
* If SequenceLevel = kSeq:
* Check input sequence must has sub-sequence
* Output: a sequence containing only the last instance of each sub-sequence
......@@ -37,6 +42,7 @@ class SequenceLastInstanceLayer : public SequencePoolLayer {
protected:
MatrixPtr tmpSrc_;
MatrixPtr tmpDest_;
std::vector<int> instanceIds_;
public:
explicit SequenceLastInstanceLayer(const LayerConfig& config)
......@@ -54,6 +60,7 @@ REGISTER_LAYER(seqlastins, SequenceLastInstanceLayer);
bool SequenceLastInstanceLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
SequencePoolLayer::init(layerMap, parameterMap);
reversed_ = config_.select_first();
tmpSrc_ =
Matrix::create(nullptr, /* height= */ 1, 1, /* trans= */ false, useGpu_);
......@@ -66,7 +73,8 @@ bool SequenceLastInstanceLayer::init(const LayerMap& layerMap,
void SequenceLastInstanceLayer::forward(PassType passType) {
SequencePoolLayer::forward(passType);
const int* starts = startPositions_->getData(false);
auto starts = (stride_ > 0) ? stridePositions_->getData()
: startPositions_->getData(false);
MatrixPtr inputValue = getInputValue(0);
MatrixPtr outputValue = getOutputValue();
......@@ -74,9 +82,10 @@ void SequenceLastInstanceLayer::forward(PassType passType) {
AsyncGpuBlock asyncGpuBlock;
REGISTER_TIMER_INFO("SequenceLastInstanceLayerForward", getName().c_str());
instanceIds_.clear();
for (size_t seqId = 0; seqId < newBatchSize_; ++seqId) {
int insId =
config_.select_first() ? starts[seqId] : starts[seqId + 1] - 1;
int insId = reversed_ ? starts[seqId] : starts[seqId + 1] - 1;
instanceIds_.push_back(insId);
outputValue->subMatrix(seqId, 1, tmpDest_)
->assign(*(inputValue->subMatrix(insId, 1, tmpSrc_)));
......@@ -96,18 +105,13 @@ void SequenceLastInstanceLayer::backward(const UpdateCallback& callback) {
MatrixPtr inputGrad = getInputGrad(0);
MatrixPtr outputGrad = getOutputGrad();
const int* starts = startPositions_->getData(false);
size_t numSequences = startPositions_->getSize() - 1;
if (inputGrad) {
AsyncGpuBlock asyncGpuBlock;
REGISTER_TIMER_INFO("SequenceLastInstanceLayerBackward", getName().c_str());
for (size_t seqId = 0; seqId < numSequences; ++seqId) {
int insId =
config_.select_first() ? starts[seqId] : starts[seqId + 1] - 1;
inputGrad->subMatrix(insId, 1, tmpDest_)
for (size_t seqId = 0; seqId < newBatchSize_; ++seqId) {
inputGrad->subMatrix(instanceIds_[seqId], 1, tmpDest_)
->add(*(outputGrad->subMatrix(seqId, 1, tmpSrc_)));
}
}
......
......@@ -37,6 +37,7 @@ bool SequencePoolLayer::init(const LayerMap& layerMap,
} else {
LOG(FATAL) << "Unknown trans_type: " << config_.trans_type();
}
stride_ = config_.seq_pool_stride();
setNeedSequenceInfo(false);
return true;
}
......@@ -55,8 +56,6 @@ void SequencePoolLayer::forward(PassType passType) {
CHECK_EQ(starts->getData()[newBatchSize_], input.getBatchSize());
CHECK_EQ(newBatchSize_, starts->getSize() - 1);
resetOutput(newBatchSize_, dim);
/* If type_ = kNonSeq, both seq has or not has sub-seq degrade to a non-seq,
* thus, in this case, output_ has no sequenceStartPositions.
* If type_ = kSeq, seq has sub-seq degrades to a seq, thus, only in this
......@@ -67,6 +66,15 @@ void SequencePoolLayer::forward(PassType passType) {
<< "when trans_type = seq, input must hasSubseq";
output_.degradeSequence(input);
}
if (stride_ > 0) {
CHECK_EQ(input.hasSubseq(), 0UL)
<< "sequence stride pooling is invalid for hasSubseq now";
output_.poolSequenceWithStride(
input, stride_, &stridePositions_, reversed_);
newBatchSize_ = stridePositions_->getSize() - 1;
}
resetOutput(newBatchSize_, dim);
}
void SequencePoolLayer::backward(const UpdateCallback& callback) {
......
......@@ -26,6 +26,10 @@ namespace paddle {
* Output: output size is the number of input sequences (NOT input instances)
* output[i] = seqlastin/average/max_{for each instance in this
* sequence}{input[i]}
* If stride_ > 0:
* Check input sequence must not have sub-sequence
* Output: a shorten sequence, pooling is performed upon a small local
* area
* If SequenceLevel = kSeq:
* Check input sequence must has sub-sequence
* Output: output size is the number of input sub-sequences
......@@ -42,6 +46,11 @@ protected:
enum SequenceLevel { kNonSeq = 0, kSeq = 1 };
size_t newBatchSize_;
ICpuGpuVectorPtr startPositions_;
int stride_;
// Store the start position of each window.
IVectorPtr stridePositions_;
// Whether the input sequence is reversed or not.
bool reversed_ = false;
public:
explicit SequencePoolLayer(const LayerConfig& config) : Layer(config) {}
......
......@@ -804,10 +804,14 @@ TEST(Layer, ExpandLayer) {
testExpandLayer("seq", true); // seq expand to hasSubseq
}
void testDegradeLayer(bool hasSubseq, string layer_type, string trans_type) {
void testDegradeLayer(bool hasSubseq,
string layer_type,
string trans_type,
int stride) {
TestConfig config;
config.layerConfig.set_type(layer_type);
config.layerConfig.set_size(10);
config.layerConfig.set_seq_pool_stride(stride);
config.biasSize = 0;
config.inputDefs.push_back(
......@@ -827,36 +831,46 @@ void testDegradeLayer(bool hasSubseq, string layer_type, string trans_type) {
if (layer_type == "average") {
for (auto strategy : {"average", "sum", "squarerootn"}) {
LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
<< " average_strategy=" << strategy;
<< " average_strategy=" << strategy
<< " seq_pool_stride=" << stride;
config.layerConfig.set_average_strategy(strategy);
testDegradeLayerGrad(config, layer_type);
}
} else {
LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type;
LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
<< " seq_pool_stride=" << stride;
testDegradeLayerGrad(config, layer_type);
}
}
TEST(Layer, MaxLayer) {
testDegradeLayer(false, "max", "non-seq"); // seq max to non-seq
testDegradeLayer(true, "max", "non-seq"); // hasSubseq max to non-seq
testDegradeLayer(true, "max", "seq"); // hasSubseq max to seq
testDegradeLayer(false, "max", "non-seq", -1); // seq max to non-seq
testDegradeLayer(true, "max", "non-seq", -1); // hasSubseq max to non-seq
testDegradeLayer(true, "max", "seq", -1); // hasSubseq max to seq
}
TEST(Layer, SequenceLastInstanceLayer) {
testDegradeLayer(false,
"seqlastins",
"non-seq"); // seq seqlastins to non-seq
"non-seq",
-1); // seq seqlastins to non-seq
testDegradeLayer(false,
"seqlastins",
"non-seq",
5); // seq seqlastins to a shorten seq, stride window = 5
testDegradeLayer(true,
"seqlastins",
"non-seq"); // hasSubseq seqlastins to non-seq
testDegradeLayer(true, "seqlastins", "seq"); // hasSubseq seqlastins to seq
"non-seq",
-1); // hasSubseq seqlastins to non-seq
testDegradeLayer(
true, "seqlastins", "seq", -1); // hasSubseq seqlastins to seq
}
TEST(Layer, AverageLayer) {
testDegradeLayer(false, "average", "non-seq"); // seq average to non-seq
testDegradeLayer(true, "average", "non-seq"); // hasSubseq average to non-seq
testDegradeLayer(true, "average", "seq"); // hasSubseq average to seq
testDegradeLayer(false, "average", "non-seq", -1); // seq average to non-seq
testDegradeLayer(
true, "average", "non-seq", -1); // hasSubseq average to non-seq
testDegradeLayer(true, "average", "seq", -1); // hasSubseq average to seq
}
TEST(Layer, SequenceConcatLayer) {
......
......@@ -559,6 +559,49 @@ void Argument::degradeSequence(const Argument& input) {
tgtBuf[numSequences] = numSubSequences;
}
void Argument::poolSequenceWithStride(const Argument& input,
size_t stride,
IVectorPtr* stridePostions,
bool reversed) {
// If input.sequenceStartPositions = [0, 9, 14, 17, 30] and stride = 5,
// then sequenceStartPositions = [0, 2, 3, 4, 7].
// If reversed = false, stridePostions = [0, 5, 9, 14, 17, 22, 27, 30];
// else reversed = true, stridePostions = [0, 4, 9, 14, 17, 20, 25, 30]
CHECK(input.sequenceStartPositions);
CHECK_EQ(input.hasSubseq(), 0UL);
CHECK_GT(stride, 0) << "stride must larger than 0";
size_t numSequences = input.getNumSequences();
ICpuGpuVector::resizeOrCreate(
sequenceStartPositions, numSequences + 1, false);
const int* starts = input.sequenceStartPositions->getData(false);
int* tgtBuf = sequenceStartPositions->getMutableData(false);
// first index of target sequence and stride positions are both 0
tgtBuf[0] = 0;
std::vector<int> stridePos;
for (size_t seqId = 0; seqId < numSequences; ++seqId) {
size_t seqLength = starts[seqId + 1] - starts[seqId];
stridePos.emplace_back(starts[seqId]);
if (seqLength == 0) {
// empty sequence
tgtBuf[seqId + 1] = tgtBuf[seqId];
} else {
int size = ceil((float)seqLength / stride);
tgtBuf[seqId + 1] = tgtBuf[seqId] + size;
for (int i = 0; i < size - 1; ++i) {
int cur = reversed ? starts[seqId + 1] - (size - 1 - i) * stride
: stridePos.back() + stride;
stridePos.emplace_back(cur);
}
}
}
stridePos.emplace_back(starts[numSequences]);
int size = stridePos.size();
CHECK_EQ(size - 1, tgtBuf[numSequences]);
IVector::resizeOrCreate(*stridePostions, size, false);
(*stridePostions)->copyFrom(stridePos.data(), size);
}
void Argument::getValueString(
std::unordered_map<std::string, std::string>* out) const {
if (value) {
......
......@@ -291,6 +291,15 @@ struct Argument {
*/
void degradeSequence(const Argument& input);
/*
After pooling with stride n (n is smaller than sequence length),
a long sequence will be shorten.
This function is invalid for sequence having sub-sequence.
*/
void poolSequenceWithStride(const Argument& input,
size_t stride,
IVectorPtr* stridePositions,
bool reversed = false);
/**
* @brief getValueString will return the argument's output in string. There
* are several kinds of output. The keys of output dictionary are 'value',
......
add_simple_unittest(test_common)
add_simple_unittest(test_argument)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/parameter/Argument.h>
using namespace paddle; // NOLINT
TEST(Argument, poolSequenceWithStride) {
Argument input, output;
ICpuGpuVector::resizeOrCreate(input.sequenceStartPositions, 5, false);
int* inStart = input.sequenceStartPositions->getMutableData(false);
inStart[0] = 0;
inStart[1] = 9;
inStart[2] = 14;
inStart[3] = 17;
inStart[4] = 30;
int strideResult[] = {0, 5, 9, 14, 17, 22, 27, 30};
int strideResultReversed[] = {0, 4, 9, 14, 17, 20, 25, 30};
for (auto reversed : {false, true}) {
IVectorPtr stridePositions;
output.poolSequenceWithStride(
input, 5 /* stride */, &stridePositions, reversed);
const int* outStart = output.sequenceStartPositions->getData(false);
CHECK_EQ(outStart[0], 0);
CHECK_EQ(outStart[1], 2);
CHECK_EQ(outStart[2], 3);
CHECK_EQ(outStart[3], 4);
CHECK_EQ(outStart[4], 7);
CHECK_EQ(stridePositions->getSize(), 8);
auto result = reversed ? strideResultReversed : strideResult;
for (int i = 0; i < 8; i++) {
CHECK_EQ(stridePositions->getData()[i], result[i]);
}
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
return RUN_ALL_TESTS();
}
......@@ -187,6 +187,13 @@ class SequenceScanner(IScanner):
self.__inner_scanner__ = inner_scanner
self.__setter__ = setter
def pre_scan(self, dat):
for each in dat:
self.__inner_scanner__.pre_scan(each)
def finish_pre_scan(self, argument):
self.__inner_scanner__.finish_pre_scan(argument)
def scan(self, dat):
self.__seq__.append(self.__seq__[-1] + self.get_size(dat))
for each in dat:
......
......@@ -83,13 +83,17 @@ def __arguments_to_numpy__(i, arg):
assert isinstance(arg, swig_paddle.Arguments)
value = arg.getSlotValue(i)
ids = arg.getSlotIds(i)
prob = arg.getSlotIn(i)
if value is not None:
assert isinstance(value, swig_paddle.Matrix)
value = value.copyToNumpyMat()
if ids is not None:
assert isinstance(ids, swig_paddle.IVector)
ids = ids.copyToNumpyArray()
return {"value": value, "id": ids}
if prob is not None:
assert isinstance(prob, swig_paddle.Matrix)
prob = prob.copyToNumpyMat()
return {"value": value, "id": ids, "prob": prob}
def __monkeypatch_gradient_machine__():
......
......@@ -441,6 +441,11 @@ message LayerConfig {
// blank label used in ctc loss
optional uint32 blank = 52 [default = 0];
// stride parameter for seqlastins layer, AverageLayer, MaxLayer, which
// controls the scope of pooling operation. can be set > 0.
// leave empty or set to -1 to disable this stride pooling.
optional int32 seq_pool_stride = 53 [default = -1];
}
message EvaluatorConfig {
......
......@@ -2485,6 +2485,7 @@ class SequenceLastInstanceLayer(LayerBase):
active_type='linear',
trans_type='non-seq',
bias=False,
stride=-1,
**xargs):
super(SequenceLastInstanceLayer, self).__init__(
name,
......@@ -2495,10 +2496,11 @@ class SequenceLastInstanceLayer(LayerBase):
**xargs)
config_assert(
len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
if trans_type == 'seq':
config_assert(stride == -1, 'subseq does not support stride window')
self.config.trans_type = trans_type
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
self.config.seq_pool_stride = stride
self.set_layer_size(self.get_input_layer(0).size)
self.create_bias_parameter(bias, self.config.size)
......@@ -2510,10 +2512,16 @@ class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
active_type='linear',
trans_type='non-seq',
bias=False,
stride=-1,
**xargs):
super(SequenceFirstInstanceLayer, self).__init__(
name, inputs=inputs, active_type=active_type, bias=bias, **xargs)
self.config.trans_type = trans_type
name,
inputs=inputs,
active_type=active_type,
trans_type=trans_type,
bias=bias,
stride=stride,
**xargs)
self.config.select_first = True
......
......@@ -1342,10 +1342,16 @@ def grumemory(input,
def last_seq(input,
name=None,
agg_level=AggregateLevel.EACH_TIMESTEP,
stride=-1,
layer_attr=None):
"""
Get Last Timestamp Activation of a sequence.
If stride > 0, this layer slides a window whose size is determined by stride,
and return the last value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.
The simple usage is:
.. code-block:: python
......@@ -1357,6 +1363,8 @@ def last_seq(input,
:type name: basestring
:param input: Input layer name.
:type input: LayerOutput
:param stride: window size.
:type stride: Int
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
......@@ -1368,11 +1376,15 @@ def last_seq(input,
" series information at all. Maybe you want to use"
" first_seq instead.")
if agg_level == AggregateLevel.EACH_SEQUENCE:
assert stride == -1
Layer(
name=name,
type=LayerType.SEQUENCE_LAST_INSTANCE,
inputs=[input.name],
trans_type=agg_level,
stride=stride,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
......@@ -1386,10 +1398,16 @@ def last_seq(input,
def first_seq(input,
name=None,
agg_level=AggregateLevel.EACH_TIMESTEP,
stride=-1,
layer_attr=None):
"""
Get First Timestamp Activation of a sequence.
If stride > 0, this layer slides a window whose size is determined by stride,
and return the first value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.
The simple usage is:
.. code-block:: python
......@@ -1401,6 +1419,8 @@ def first_seq(input,
:type name: basestring
:param input: Input layer name.
:type input: LayerOutput
:param stride: window size.
:type stride: Int
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: LayerOutput object.
......@@ -1413,11 +1433,15 @@ def first_seq(input,
' time series information at all. Maybe you want to use'
' last_seq instead.')
if agg_level == AggregateLevel.EACH_SEQUENCE:
assert stride == -1
Layer(
name=name,
type=LayerType.SEQUENCE_FIRST_INSTANCE,
inputs=[input.name],
trans_type=agg_level,
stride=stride,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
......@@ -4873,7 +4897,7 @@ def nce_layer(input,
if neg_distribution is not None:
assert isinstance(neg_distribution, collections.Sequence)
assert len(neg_distribution) == num_classes
assert sum(neg_distribution) == 1
assert abs(sum(neg_distribution) - 1.0) < 1e-5
if not isinstance(act, BaseActivation):
raise TypeError()
......
......@@ -14,4 +14,7 @@ for op in seq_op:
for al in agg_level:
opts.append(op(input=din, agg_level=al))
for op in seq_op:
opts.append(op(input=din, agg_level=AggregateLevel.EACH_TIMESTEP, stride=5))
outputs(opts)
......@@ -15,6 +15,7 @@ layers {
}
select_first: true
trans_type: "seq"
seq_pool_stride: -1
}
layers {
name: "__first_seq_1__"
......@@ -26,6 +27,7 @@ layers {
}
select_first: true
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__last_seq_0__"
......@@ -36,6 +38,7 @@ layers {
input_layer_name: "data"
}
trans_type: "seq"
seq_pool_stride: -1
}
layers {
name: "__last_seq_1__"
......@@ -46,12 +49,38 @@ layers {
input_layer_name: "data"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__first_seq_2__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
select_first: true
trans_type: "non-seq"
seq_pool_stride: 5
}
layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
trans_type: "non-seq"
seq_pool_stride: 5
}
input_layer_names: "data"
output_layer_names: "__first_seq_0__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__first_seq_2__"
output_layer_names: "__last_seq_2__"
sub_models {
name: "root"
layer_names: "data"
......@@ -59,11 +88,15 @@ sub_models {
layer_names: "__first_seq_1__"
layer_names: "__last_seq_0__"
layer_names: "__last_seq_1__"
layer_names: "__first_seq_2__"
layer_names: "__last_seq_2__"
input_layer_names: "data"
output_layer_names: "__first_seq_0__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__first_seq_2__"
output_layer_names: "__last_seq_2__"
is_recurrent_layer_group: false
}
......@@ -128,6 +128,7 @@ layers {
input_layer_name: "__simple_gru_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__last_seq_1__"
......@@ -138,6 +139,7 @@ layers {
input_layer_name: "__simple_gru_1__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__fc_layer_0__"
......
......@@ -210,6 +210,7 @@ layers {
input_layer_name: "__lstm_group_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__last_seq_1__"
......@@ -220,6 +221,7 @@ layers {
input_layer_name: "__lstm_group_1__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__fc_layer_0__"
......
......@@ -143,6 +143,7 @@ layers {
input_layer_name: "__recurrent_layer_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__first_seq_0__"
......@@ -154,6 +155,7 @@ layers {
}
select_first: true
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__last_seq_1__"
......@@ -164,6 +166,7 @@ layers {
input_layer_name: "__lstmemory_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__first_seq_1__"
......@@ -175,6 +178,7 @@ layers {
}
select_first: true
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__last_seq_2__"
......@@ -185,6 +189,7 @@ layers {
input_layer_name: "__gru_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__first_seq_2__"
......@@ -196,6 +201,7 @@ layers {
}
select_first: true
trans_type: "non-seq"
seq_pool_stride: -1
}
parameters {
name: "___fc_layer_0__.w0"
......
......@@ -96,6 +96,7 @@ layers {
input_layer_name: "rnn_forward"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__recurrent_group_1__"
......@@ -145,6 +146,7 @@ layers {
}
select_first: true
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__recurrent_group_2__"
......@@ -193,6 +195,7 @@ layers {
input_layer_name: "rnn_subseq_forward"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__lstm_group_0___recurrent_group"
......@@ -282,6 +285,7 @@ layers {
input_layer_name: "__lstm_group_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__gru_group_0___recurrent_group"
......@@ -330,6 +334,7 @@ layers {
input_layer_name: "__gru_group_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__recurrent_group_3__"
......@@ -378,6 +383,7 @@ layers {
input_layer_name: "__fc_layer_0__"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
parameters {
name: "___mixed_0__.w0"
......
......@@ -13,7 +13,7 @@
# limitations under the License.
from py_paddle import DataProviderConverter
import collections
import paddle.trainer.PyDataProvider2 as pydp2
__all__ = ['DataFeeder']
......@@ -35,15 +35,30 @@ class DataFeeder(DataProviderConverter):
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
The example usage:
The simple usage shows below
.. code-block:: python
feeding = ['image', 'label']
data_types = enumerate_data_types_of_data_layers(topology)
feeder = DataFeeder(data_types=data_types, feeding=feeding)
minibatch_data = [([1.0, 2.0, 3.0, ...], 5)]
arg = feeder(minibatch_data)
If mini-batch data and data layers are not one to one mapping, we
could pass a dictionary to feeding parameter to represent the mapping
relationship.
.. code-block:: python
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
reader_dict = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, reader_dict=reader_dict)
feeding = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, feeding=feeding)
minibatch_data = [
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
......@@ -65,9 +80,9 @@ class DataFeeder(DataProviderConverter):
a tuple of (data_name, data_type).
:type data_types: list
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type feeding: dict
:param feeding: A dictionary or a sequence to specify the position of each
data in the input data.
:type feeding: dict|collections.Sequence|None
"""
def __init__(self, data_types, feeding=None):
......@@ -75,6 +90,13 @@ class DataFeeder(DataProviderConverter):
input_types = []
if feeding is None:
feeding = default_feeding_map(data_types)
elif isinstance(feeding, collections.Sequence):
feed_list = feeding
feeding = dict()
for i, name in enumerate(feed_list):
feeding[name] = i
elif not isinstance(feeding, dict):
raise TypeError("Feeding should be dict or sequence or None.")
self.feeding = feeding
for each in data_types:
......
......@@ -34,7 +34,7 @@ URL_TRAIN = 'http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz
MD5_TRAIN = 'a755315dd01c2c35bde29a744ede23a6'
# this is the pretrained model, whose bleu = 26.92
URL_MODEL = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_14/wmt14_model.tar.gz'
MD5_MODEL = '6b097d23e15654608c6f74923e975535'
MD5_MODEL = '4ce14a26607fb8a1cc23bcdedb1895e4'
START = "<s>"
END = "<e>"
......@@ -140,6 +140,12 @@ def model():
return parameters
def trg_dict(dict_size):
tar_file = download(URL_TRAIN, 'wmt14', MD5_TRAIN)
src_dict, trg_dict = __read_to_dict__(tar_file, dict_size)
return trg_dict
def fetch():
download(URL_TRAIN, 'wmt14', MD5_TRAIN)
download(URL_MODEL, 'wmt14', MD5_MODEL)
......@@ -48,8 +48,13 @@ class Inference(object):
self.__gradient_machine__.finish()
def iter_infer_field(self, field, **kwargs):
if not isinstance(field, list) and not isinstance(field, tuple):
field = [field]
for result in self.iter_infer(**kwargs):
yield [each_result[field] for each_result in result]
for each_result in result:
item = [each_result[each_field] for each_field in field]
yield item
def infer(self, field='value', **kwargs):
retv = None
......@@ -87,9 +92,11 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
:type input: collections.Iterable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `ids`]. `value`
means return the prediction probabilities, `ids` means return
the prediction labels. Default is `value`
:param field: The prediction field. It should in [`value`, `id`, `prob`].
`value` and `prob` mean return the prediction probabilities,
`id` means return the prediction labels. Default is `value`.
Note that `prob` only used when output_layer is beam_search
or max_id.
:type field: str
:return: a numpy array
:rtype: numpy.ndarray
......
......@@ -83,7 +83,7 @@ class SGD(object):
:type event_handler: (BaseEvent) => None
:param feeding: Feeding is a map of neural network input name and array
index that reader returns.
:type feeding: dict
:type feeding: dict|list
:return:
"""
if event_handler is None:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册