未验证 提交 b38e4f28 编写于 作者: L LielinJiang 提交者: GitHub

Refine vision models (#27476)

* refine vision models
上级 0b4bb023
...@@ -301,10 +301,11 @@ class ProgBarLogger(Callback): ...@@ -301,10 +301,11 @@ class ProgBarLogger(Callback):
train_dataset = paddle.vision.datasets.MNIST(mode='train') train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None), lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
inputs, labels) inputs, labels)
optim = paddle.optimizer.Adam(0.001) optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
model.prepare(optimizer=optim, model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(), loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy()) metrics=paddle.metric.Accuracy())
...@@ -436,10 +437,11 @@ class ModelCheckpoint(Callback): ...@@ -436,10 +437,11 @@ class ModelCheckpoint(Callback):
train_dataset = paddle.vision.datasets.MNIST(mode='train') train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None), lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
inputs, labels) inputs, labels)
optim = paddle.optimizer.Adam(0.001) optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
model.prepare(optimizer=optim, model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(), loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy()) metrics=paddle.metric.Accuracy())
......
...@@ -814,10 +814,9 @@ class Model(object): ...@@ -814,10 +814,9 @@ class Model(object):
from paddle.static import InputSpec from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu' device = paddle.set_device('cpu') # or 'gpu'
# if use static graph, do not set
paddle.disable_static(device)
net = nn.Sequential( net = nn.Sequential(
nn.Flatten(1),
nn.Linear(784, 200), nn.Linear(784, 200),
nn.Tanh(), nn.Tanh(),
nn.Linear(200, 10)) nn.Linear(200, 10))
...@@ -833,7 +832,7 @@ class Model(object): ...@@ -833,7 +832,7 @@ class Model(object):
paddle.nn.CrossEntropyLoss(), paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy()) paddle.metric.Accuracy())
data = paddle.vision.datasets.MNIST(mode='train', chw_format=False) data = paddle.vision.datasets.MNIST(mode='train')
model.fit(data, epochs=2, batch_size=32, verbose=1) model.fit(data, epochs=2, batch_size=32, verbose=1)
""" """
...@@ -850,7 +849,8 @@ class Model(object): ...@@ -850,7 +849,8 @@ class Model(object):
if not isinstance(inputs, (list, dict, Input)): if not isinstance(inputs, (list, dict, Input)):
raise TypeError( raise TypeError(
"'inputs' must be list or dict, and couldn't be None.") "'inputs' must be list or dict in static graph mode")
self._inputs = self._verify_spec(inputs, True) self._inputs = self._verify_spec(inputs, True)
self._labels = self._verify_spec(labels) self._labels = self._verify_spec(labels)
...@@ -885,7 +885,6 @@ class Model(object): ...@@ -885,7 +885,6 @@ class Model(object):
from paddle.static import InputSpec from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu' device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device)
net = nn.Sequential( net = nn.Sequential(
nn.Linear(784, 200), nn.Linear(784, 200),
...@@ -930,7 +929,6 @@ class Model(object): ...@@ -930,7 +929,6 @@ class Model(object):
from paddle.static import InputSpec from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu' device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device)
net = nn.Sequential( net = nn.Sequential(
nn.Linear(784, 200), nn.Linear(784, 200),
...@@ -970,9 +968,12 @@ class Model(object): ...@@ -970,9 +968,12 @@ class Model(object):
import numpy as np import numpy as np
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
from paddle.static import InputSpec
device = paddle.set_device('cpu') # or 'gpu' device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device)
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
net = nn.Sequential( net = nn.Sequential(
nn.Linear(784, 200), nn.Linear(784, 200),
...@@ -980,7 +981,7 @@ class Model(object): ...@@ -980,7 +981,7 @@ class Model(object):
nn.Linear(200, 10), nn.Linear(200, 10),
nn.Softmax()) nn.Softmax())
model = paddle.Model(net) model = paddle.Model(net, input, label)
model.prepare() model.prepare()
data = np.random.random(size=(4,784)).astype(np.float32) data = np.random.random(size=(4,784)).astype(np.float32)
out = model.test_batch([data]) out = model.test_batch([data])
...@@ -1026,6 +1027,7 @@ class Model(object): ...@@ -1026,6 +1027,7 @@ class Model(object):
def __init__(self): def __init__(self):
super(Mnist, self).__init__() super(Mnist, self).__init__()
self.net = nn.Sequential( self.net = nn.Sequential(
nn.Flatten(1),
nn.Linear(784, 200), nn.Linear(784, 200),
nn.Tanh(), nn.Tanh(),
nn.Linear(200, 10), nn.Linear(200, 10),
...@@ -1045,7 +1047,7 @@ class Model(object): ...@@ -1045,7 +1047,7 @@ class Model(object):
optim = paddle.optimizer.SGD(learning_rate=1e-3, optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameters=model.parameters()) parameters=model.parameters())
model.prepare(optim, paddle.nn.CrossEntropyLoss()) model.prepare(optim, paddle.nn.CrossEntropyLoss())
data = paddle.vision.datasets.MNIST(mode='train', chw_format=False) data = paddle.vision.datasets.MNIST(mode='train')
model.fit(data, epochs=1, batch_size=32, verbose=0) model.fit(data, epochs=1, batch_size=32, verbose=0)
model.save('checkpoint/test') # save for training model.save('checkpoint/test') # save for training
model.save('inference_model', False) # save for inference model.save('inference_model', False) # save for inference
...@@ -1092,15 +1094,18 @@ class Model(object): ...@@ -1092,15 +1094,18 @@ class Model(object):
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
from paddle.static import InputSpec
device = paddle.set_device('cpu') device = paddle.set_device('cpu')
paddle.disable_static(device)
input = InputSpec([None, 784], 'float32', 'x')
model = paddle.Model(nn.Sequential( model = paddle.Model(nn.Sequential(
nn.Linear(784, 200), nn.Linear(784, 200),
nn.Tanh(), nn.Tanh(),
nn.Linear(200, 10), nn.Linear(200, 10),
nn.Softmax())) nn.Softmax()), input)
model.save('checkpoint/test') model.save('checkpoint/test')
model.load('checkpoint/test') model.load('checkpoint/test')
""" """
...@@ -1165,13 +1170,15 @@ class Model(object): ...@@ -1165,13 +1170,15 @@ class Model(object):
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
from paddle.static import InputSpec
paddle.disable_static() input = InputSpec([None, 784], 'float32', 'x')
model = paddle.Model(nn.Sequential( model = paddle.Model(nn.Sequential(
nn.Linear(784, 200), nn.Linear(784, 200),
nn.Tanh(), nn.Tanh(),
nn.Linear(200, 10))) nn.Linear(200, 10)), input)
params = model.parameters() params = model.parameters()
""" """
return self._adapter.parameters() return self._adapter.parameters()
...@@ -1313,7 +1320,7 @@ class Model(object): ...@@ -1313,7 +1320,7 @@ class Model(object):
label = InputSpec([None, 1], 'int64', 'label') label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model( model = paddle.Model(
paddle.vision.models.LeNet(classifier_activation=None), paddle.vision.models.LeNet(),
input, label) input, label)
optim = paddle.optimizer.Adam( optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters()) learning_rate=0.001, parameters=model.parameters())
...@@ -1350,7 +1357,7 @@ class Model(object): ...@@ -1350,7 +1357,7 @@ class Model(object):
label = InputSpec([None, 1], 'int64', 'label') label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model( model = paddle.Model(
paddle.vision.models.LeNet(classifier_activation=None), input, label) paddle.vision.models.LeNet(), input, label)
optim = paddle.optimizer.Adam( optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters()) learning_rate=0.001, parameters=model.parameters())
model.prepare( model.prepare(
...@@ -1483,7 +1490,7 @@ class Model(object): ...@@ -1483,7 +1490,7 @@ class Model(object):
# imperative mode # imperative mode
paddle.disable_static() paddle.disable_static()
model = paddle.Model(paddle.vision.models.LeNet()) model = paddle.Model(paddle.vision.models.LeNet(), input, label)
model.prepare(metrics=paddle.metric.Accuracy()) model.prepare(metrics=paddle.metric.Accuracy())
result = model.evaluate(val_dataset, batch_size=64) result = model.evaluate(val_dataset, batch_size=64)
print(result) print(result)
...@@ -1580,19 +1587,20 @@ class Model(object): ...@@ -1580,19 +1587,20 @@ class Model(object):
test_dataset = MnistDataset(mode='test', return_label=False) test_dataset = MnistDataset(mode='test', return_label=False)
# declarative mode # imperative mode
input = InputSpec([-1, 1, 28, 28], 'float32', 'image') input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
model = paddle.Model(paddle.vision.models.LeNet(), input) model = paddle.Model(paddle.vision.models.LeNet(), input)
model.prepare() model.prepare()
result = model.predict(test_dataset, batch_size=64) result = model.predict(test_dataset, batch_size=64)
print(len(result[0]), result[0][0].shape) print(len(result[0]), result[0][0].shape)
# imperative mode # declarative mode
device = paddle.set_device('cpu') device = paddle.set_device('cpu')
paddle.disable_static(device) paddle.enable_static()
model = paddle.Model(paddle.vision.models.LeNet()) input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
model = paddle.Model(paddle.vision.models.LeNet(), input)
model.prepare() model.prepare()
result = model.predict(test_dataset, batch_size=64) result = model.predict(test_dataset, batch_size=64)
print(len(result[0]), result[0][0].shape) print(len(result[0]), result[0][0].shape)
""" """
...@@ -1832,15 +1840,11 @@ class Model(object): ...@@ -1832,15 +1840,11 @@ class Model(object):
import paddle import paddle
from paddle.static import InputSpec from paddle.static import InputSpec
dynamic = True
device = paddle.set_device('cpu')
paddle.disable_static(device) if dynamic else None
input = InputSpec([None, 1, 28, 28], 'float32', 'image') input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label') label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None), model = paddle.Model(paddle.vision.LeNet(),
input, label) input, label)
optim = paddle.optimizer.Adam( optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters()) learning_rate=0.001, parameters=model.parameters())
......
...@@ -182,7 +182,6 @@ class Accuracy(Metric): ...@@ -182,7 +182,6 @@ class Accuracy(Metric):
import numpy as np import numpy as np
import paddle import paddle
paddle.disable_static()
x = paddle.to_tensor(np.array([ x = paddle.to_tensor(np.array([
[0.1, 0.2, 0.3, 0.4], [0.1, 0.2, 0.3, 0.4],
[0.1, 0.4, 0.3, 0.2], [0.1, 0.4, 0.3, 0.2],
...@@ -202,11 +201,13 @@ class Accuracy(Metric): ...@@ -202,11 +201,13 @@ class Accuracy(Metric):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.static import InputSpec
paddle.disable_static()
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
train_dataset = paddle.vision.datasets.MNIST(mode='train') train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None)) model = paddle.Model(paddle.vision.LeNet(), input, label)
optim = paddle.optimizer.Adam( optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters()) learning_rate=0.001, parameters=model.parameters())
model.prepare( model.prepare(
......
...@@ -8,10 +8,6 @@ foreach(TEST_OP ${DIST_TEST_OPS}) ...@@ -8,10 +8,6 @@ foreach(TEST_OP ${DIST_TEST_OPS})
list(REMOVE_ITEM TEST_OPS ${TEST_OP}) list(REMOVE_ITEM TEST_OPS ${TEST_OP})
endforeach() endforeach()
# disable test_pretrained_model and test_vision_models
list(REMOVE_ITEM TEST_OPS test_pretrained_model)
list(REMOVE_ITEM TEST_OPS test_vision_models)
foreach(src ${TEST_OPS}) foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py) py_test(${src} SRCS ${src}.py)
endforeach() endforeach()
......
...@@ -68,7 +68,7 @@ class TestDistTraning(unittest.TestCase): ...@@ -68,7 +68,7 @@ class TestDistTraning(unittest.TestCase):
inputs = [Input(im_shape, 'float32', 'image')] inputs = [Input(im_shape, 'float32', 'image')]
labels = [Input([None, 1], 'int64', 'label')] labels = [Input([None, 1], 'int64', 'label')]
model = Model(LeNet(classifier_activation=None), inputs, labels) model = Model(LeNet(), inputs, labels)
optim = fluid.optimizer.Momentum( optim = fluid.optimizer.Momentum(
learning_rate=0.001, momentum=.9, parameter_list=model.parameters()) learning_rate=0.001, momentum=.9, parameter_list=model.parameters())
model.prepare(optim, CrossEntropyLoss(), Accuracy()) model.prepare(optim, CrossEntropyLoss(), Accuracy())
......
...@@ -67,7 +67,7 @@ class TestDistTraning(unittest.TestCase): ...@@ -67,7 +67,7 @@ class TestDistTraning(unittest.TestCase):
inputs = [Input(im_shape, 'float32', 'image')] inputs = [Input(im_shape, 'float32', 'image')]
labels = [Input([None, 1], 'int64', 'label')] labels = [Input([None, 1], 'int64', 'label')]
model = Model(LeNet(classifier_activation=None), inputs, labels) model = Model(LeNet(), inputs, labels)
optim = fluid.optimizer.Momentum( optim = fluid.optimizer.Momentum(
learning_rate=0.001, momentum=.9, parameter_list=model.parameters()) learning_rate=0.001, momentum=.9, parameter_list=model.parameters())
model.prepare(optim, CrossEntropyLoss(), Accuracy()) model.prepare(optim, CrossEntropyLoss(), Accuracy())
......
...@@ -40,7 +40,7 @@ from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTra ...@@ -40,7 +40,7 @@ from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTra
class LeNetDygraph(paddle.nn.Layer): class LeNetDygraph(paddle.nn.Layer):
def __init__(self, num_classes=10, classifier_activation=None): def __init__(self, num_classes=10):
super(LeNetDygraph, self).__init__() super(LeNetDygraph, self).__init__()
self.num_classes = num_classes self.num_classes = num_classes
self.features = Sequential( self.features = Sequential(
...@@ -55,8 +55,7 @@ class LeNetDygraph(paddle.nn.Layer): ...@@ -55,8 +55,7 @@ class LeNetDygraph(paddle.nn.Layer):
if num_classes > 0: if num_classes > 0:
self.fc = Sequential( self.fc = Sequential(
Linear(400, 120), Linear(120, 84), Linear(84, 10), Linear(400, 120), Linear(120, 84), Linear(84, 10))
Softmax()) #Todo: accept any activation
def forward(self, inputs): def forward(self, inputs):
x = self.features(inputs) x = self.features(inputs)
...@@ -67,6 +66,34 @@ class LeNetDygraph(paddle.nn.Layer): ...@@ -67,6 +66,34 @@ class LeNetDygraph(paddle.nn.Layer):
return x return x
class LeNetDeclarative(fluid.dygraph.Layer):
def __init__(self, num_classes=10):
super(LeNetDeclarative, self).__init__()
self.num_classes = num_classes
self.features = Sequential(
Conv2d(
1, 6, 3, stride=1, padding=1),
ReLU(),
Pool2D(2, 'max', 2),
Conv2d(
6, 16, 5, stride=1, padding=0),
ReLU(),
Pool2D(2, 'max', 2))
if num_classes > 0:
self.fc = Sequential(
Linear(400, 120), Linear(120, 84), Linear(84, 10))
@declarative
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.fc(x)
return x
class MnistDataset(MNIST): class MnistDataset(MNIST):
def __init__(self, mode, return_label=True, sample_num=None): def __init__(self, mode, return_label=True, sample_num=None):
super(MnistDataset, self).__init__(mode=mode) super(MnistDataset, self).__init__(mode=mode)
...@@ -198,7 +225,7 @@ class TestModel(unittest.TestCase): ...@@ -198,7 +225,7 @@ class TestModel(unittest.TestCase):
paddle.manual_seed(seed) paddle.manual_seed(seed)
paddle.framework.random._manual_program_seed(seed) paddle.framework.random._manual_program_seed(seed)
net = LeNet(classifier_activation=None) net = LeNet()
optim_new = fluid.optimizer.Adam( optim_new = fluid.optimizer.Adam(
learning_rate=0.001, parameter_list=net.parameters()) learning_rate=0.001, parameter_list=net.parameters())
model = Model(net, inputs=self.inputs, labels=self.labels) model = Model(net, inputs=self.inputs, labels=self.labels)
...@@ -287,14 +314,12 @@ class TestModel(unittest.TestCase): ...@@ -287,14 +314,12 @@ class TestModel(unittest.TestCase):
class MyModel(paddle.nn.Layer): class MyModel(paddle.nn.Layer):
def __init__(self, classifier_activation='softmax'): def __init__(self):
super(MyModel, self).__init__() super(MyModel, self).__init__()
self._fc = Linear(20, 10) self._fc = Linear(20, 10)
self._act = Softmax() #Todo: accept any activation
def forward(self, x): def forward(self, x):
y = self._fc(x) y = self._fc(x)
y = self._act(y)
return y return y
...@@ -311,7 +336,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -311,7 +336,7 @@ class TestModelFunction(unittest.TestCase):
def get_expect(): def get_expect():
fluid.enable_dygraph(fluid.CPUPlace()) fluid.enable_dygraph(fluid.CPUPlace())
self.set_seed() self.set_seed()
m = MyModel(classifier_activation=None) m = MyModel()
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=m.parameters()) parameter_list=m.parameters())
m.train() m.train()
...@@ -330,7 +355,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -330,7 +355,7 @@ class TestModelFunction(unittest.TestCase):
fluid.enable_dygraph(device) if dynamic else None fluid.enable_dygraph(device) if dynamic else None
self.set_seed() self.set_seed()
net = MyModel(classifier_activation=None) net = MyModel()
optim2 = fluid.optimizer.SGD(learning_rate=0.001, optim2 = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters()) parameter_list=net.parameters())
...@@ -374,7 +399,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -374,7 +399,7 @@ class TestModelFunction(unittest.TestCase):
for dynamic in [True, False]: for dynamic in [True, False]:
device = paddle.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None fluid.enable_dygraph(device) if dynamic else None
net = MyModel(classifier_activation=None) net = MyModel()
inputs = [InputSpec([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
...@@ -417,7 +442,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -417,7 +442,7 @@ class TestModelFunction(unittest.TestCase):
fluid.enable_dygraph(device) fluid.enable_dygraph(device)
inputs = [InputSpec([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(MyModel(classifier_activation=None), inputs, labels) model = Model(MyModel(), inputs, labels)
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=model.parameters()) parameter_list=model.parameters())
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum")) model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
...@@ -426,7 +451,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -426,7 +451,7 @@ class TestModelFunction(unittest.TestCase):
inputs = [InputSpec([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(MyModel(classifier_activation=None), inputs, labels) model = Model(MyModel(), inputs, labels)
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=model.parameters()) parameter_list=model.parameters())
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum")) model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
...@@ -436,7 +461,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -436,7 +461,7 @@ class TestModelFunction(unittest.TestCase):
def test_static_save_dynamic_load(self): def test_static_save_dynamic_load(self):
path = tempfile.mkdtemp() path = tempfile.mkdtemp()
net = MyModel(classifier_activation=None) net = MyModel()
inputs = [InputSpec([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
...@@ -448,7 +473,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -448,7 +473,7 @@ class TestModelFunction(unittest.TestCase):
device = paddle.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) #if dynamic else None fluid.enable_dygraph(device) #if dynamic else None
net = MyModel(classifier_activation=None) net = MyModel()
inputs = [InputSpec([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
...@@ -557,7 +582,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -557,7 +582,7 @@ class TestModelFunction(unittest.TestCase):
class TestRaiseError(unittest.TestCase): class TestRaiseError(unittest.TestCase):
def test_input_without_name(self): def test_input_without_name(self):
net = MyModel(classifier_activation=None) net = MyModel()
inputs = [InputSpec([None, 10], 'float32')] inputs = [InputSpec([None, 10], 'float32')]
labels = [InputSpec([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
...@@ -567,7 +592,7 @@ class TestRaiseError(unittest.TestCase): ...@@ -567,7 +592,7 @@ class TestRaiseError(unittest.TestCase):
def test_input_without_input_spec(self): def test_input_without_input_spec(self):
for dynamic in [True, False]: for dynamic in [True, False]:
paddle.disable_static() if dynamic else None paddle.disable_static() if dynamic else None
net = MyModel(classifier_activation=None) net = MyModel()
with self.assertRaises(TypeError): with self.assertRaises(TypeError):
model = Model(net) model = Model(net)
paddle.enable_static() paddle.enable_static()
......
...@@ -13,6 +13,8 @@ ...@@ -13,6 +13,8 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import tempfile
import shutil
import numpy as np import numpy as np
import paddle import paddle
...@@ -23,27 +25,36 @@ import paddle.vision.models as models ...@@ -23,27 +25,36 @@ import paddle.vision.models as models
# test the predicted resutls of static graph and dynamic graph are equal # test the predicted resutls of static graph and dynamic graph are equal
# when used pretrained model # when used pretrained model
class TestPretrainedModel(unittest.TestCase): class TestPretrainedModel(unittest.TestCase):
def infer(self, x, arch, dygraph=True): def infer(self, arch):
if dygraph: path = tempfile.mkdtemp()
paddle.disable_static() x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32)
res = {}
net = models.__dict__[arch](pretrained=True, classifier_activation=None) for dygraph in [True, False]:
inputs = [InputSpec([None, 3, 224, 224], 'float32', 'image')] if not dygraph:
model = paddle.Model(network=net, inputs=inputs) paddle.enable_static()
model.prepare()
res = model.test_batch(x) net = models.__dict__[arch]()
inputs = [InputSpec([None, 3, 224, 224], 'float32', 'image')]
if dygraph: model = paddle.Model(network=net, inputs=inputs)
paddle.enable_static() model.prepare()
return res
if dygraph:
model.save(path)
res['dygraph'] = model.test_batch(x)
else:
model.load(path)
res['static'] = model.test_batch(x)
if not dygraph:
paddle.disable_static()
shutil.rmtree(path)
np.testing.assert_allclose(res['dygraph'], res['static'])
def test_models(self): def test_models(self):
arches = ['mobilenet_v1', 'mobilenet_v2', 'resnet18'] arches = ['mobilenet_v1', 'mobilenet_v2', 'resnet18']
for arch in arches: for arch in arches:
x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32) self.infer(arch)
y_dygraph = self.infer(x, arch)
y_static = self.infer(x, arch, dygraph=False)
np.testing.assert_allclose(y_dygraph, y_static)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -36,7 +36,7 @@ class TestVisonModels(unittest.TestCase): ...@@ -36,7 +36,7 @@ class TestVisonModels(unittest.TestCase):
model.test_batch(x) model.test_batch(x)
def test_mobilenetv2_pretrained(self): def test_mobilenetv2_pretrained(self):
self.models_infer('mobilenet_v2', pretrained=True) self.models_infer('mobilenet_v2', pretrained=False)
def test_mobilenetv1(self): def test_mobilenetv1(self):
self.models_infer('mobilenet_v1') self.models_infer('mobilenet_v1')
......
...@@ -12,20 +12,19 @@ ...@@ -12,20 +12,19 @@
#See the License for the specific language governing permissions and #See the License for the specific language governing permissions and
#limitations under the License. #limitations under the License.
import paddle.fluid as fluid import paddle
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax import paddle.nn as nn
__all__ = ['LeNet'] __all__ = ['LeNet']
class LeNet(fluid.dygraph.Layer): class LeNet(nn.Layer):
"""LeNet model from """LeNet model from
`"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_ `"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_
Args: Args:
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 10. will not be defined. Default: 10.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -35,28 +34,27 @@ class LeNet(fluid.dygraph.Layer): ...@@ -35,28 +34,27 @@ class LeNet(fluid.dygraph.Layer):
model = LeNet() model = LeNet()
""" """
def __init__(self, num_classes=10, classifier_activation='softmax'): def __init__(self, num_classes=10):
super(LeNet, self).__init__() super(LeNet, self).__init__()
self.num_classes = num_classes self.num_classes = num_classes
self.features = Sequential( self.features = nn.Sequential(
Conv2d( nn.Conv2d(
1, 6, 3, stride=1, padding=1), 1, 6, 3, stride=1, padding=1),
ReLU(), nn.ReLU(),
Pool2D(2, 'max', 2), nn.MaxPool2d(2, 2),
Conv2d( nn.Conv2d(
6, 16, 5, stride=1, padding=0), 6, 16, 5, stride=1, padding=0),
ReLU(), nn.ReLU(),
Pool2D(2, 'max', 2)) nn.MaxPool2d(2, 2))
if num_classes > 0: if num_classes > 0:
self.fc = Sequential( self.fc = nn.Sequential(
Linear(400, 120), Linear(120, 84), Linear(84, 10), nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear(84, 10))
Softmax()) #Todo: accept any activation
def forward(self, inputs): def forward(self, inputs):
x = self.features(inputs) x = self.features(inputs)
if self.num_classes > 0: if self.num_classes > 0:
x = fluid.layers.flatten(x, 1) x = paddle.flatten(x, 1)
x = self.fc(x) x = self.fc(x)
return x return x
...@@ -12,10 +12,8 @@ ...@@ -12,10 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import paddle.fluid as fluid import paddle
from paddle.fluid.initializer import MSRA import paddle.nn as nn
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.utils.download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
...@@ -24,85 +22,66 @@ __all__ = ['MobileNetV1', 'mobilenet_v1'] ...@@ -24,85 +22,66 @@ __all__ = ['MobileNetV1', 'mobilenet_v1']
model_urls = { model_urls = {
'mobilenetv1_1.0': 'mobilenetv1_1.0':
('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams', ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v1_x1.0.pdparams',
'bf0d25cb0bed1114d9dac9384ce2b4a6') '42a154c2f26f86e7457d6daded114e8c')
} }
class ConvBNLayer(fluid.dygraph.Layer): class ConvBNLayer(nn.Layer):
def __init__(self, def __init__(self,
num_channels, in_channels,
filter_size, out_channels,
num_filters, kernel_size,
stride, stride,
padding, padding,
channels=None, num_groups=1):
num_groups=1,
act='relu',
use_cudnn=True,
name=None):
super(ConvBNLayer, self).__init__() super(ConvBNLayer, self).__init__()
self._conv = Conv2D( self._conv = nn.Conv2d(
num_channels=num_channels, in_channels,
num_filters=num_filters, out_channels,
filter_size=filter_size, kernel_size,
stride=stride, stride=stride,
padding=padding, padding=padding,
groups=num_groups, groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(
initializer=MSRA(), name=self.full_name() + "_weights"),
bias_attr=False) bias_attr=False)
self._batch_norm = BatchNorm( self._norm_layer = nn.BatchNorm2d(out_channels)
num_filters, self._act = nn.ReLU()
act=act,
param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
moving_mean_name=self.full_name() + "_bn" + '_mean',
moving_variance_name=self.full_name() + "_bn" + '_variance')
def forward(self, inputs): def forward(self, x):
y = self._conv(inputs) x = self._conv(x)
y = self._batch_norm(y) x = self._norm_layer(x)
return y x = self._act(x)
return x
class DepthwiseSeparable(fluid.dygraph.Layer): class DepthwiseSeparable(nn.Layer):
def __init__(self, def __init__(self, in_channels, out_channels1, out_channels2, num_groups,
num_channels, stride, scale):
num_filters1,
num_filters2,
num_groups,
stride,
scale,
name=None):
super(DepthwiseSeparable, self).__init__() super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer( self._depthwise_conv = ConvBNLayer(
num_channels=num_channels, in_channels,
num_filters=int(num_filters1 * scale), int(out_channels1 * scale),
filter_size=3, kernel_size=3,
stride=stride, stride=stride,
padding=1, padding=1,
num_groups=int(num_groups * scale), num_groups=int(num_groups * scale))
use_cudnn=False)
self._pointwise_conv = ConvBNLayer( self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale), int(out_channels1 * scale),
filter_size=1, int(out_channels2 * scale),
num_filters=int(num_filters2 * scale), kernel_size=1,
stride=1, stride=1,
padding=0) padding=0)
def forward(self, inputs): def forward(self, x):
y = self._depthwise_conv(inputs) x = self._depthwise_conv(x)
y = self._pointwise_conv(y) x = self._pointwise_conv(x)
return y return x
class MobileNetV1(fluid.dygraph.Layer): class MobileNetV1(nn.Layer):
"""MobileNetV1 model from """MobileNetV1 model from
`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_. `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.
...@@ -111,7 +90,6 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -111,7 +90,6 @@ class MobileNetV1(fluid.dygraph.Layer):
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True. with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -121,11 +99,7 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -121,11 +99,7 @@ class MobileNetV1(fluid.dygraph.Layer):
model = MobileNetV1() model = MobileNetV1()
""" """
def __init__(self, def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
scale=1.0,
num_classes=1000,
with_pool=True,
classifier_activation='softmax'):
super(MobileNetV1, self).__init__() super(MobileNetV1, self).__init__()
self.scale = scale self.scale = scale
self.dwsl = [] self.dwsl = []
...@@ -133,18 +107,17 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -133,18 +107,17 @@ class MobileNetV1(fluid.dygraph.Layer):
self.with_pool = with_pool self.with_pool = with_pool
self.conv1 = ConvBNLayer( self.conv1 = ConvBNLayer(
num_channels=3, in_channels=3,
filter_size=3, out_channels=int(32 * scale),
channels=3, kernel_size=3,
num_filters=int(32 * scale),
stride=2, stride=2,
padding=1) padding=1)
dws21 = self.add_sublayer( dws21 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(32 * scale), in_channels=int(32 * scale),
num_filters1=32, out_channels1=32,
num_filters2=64, out_channels2=64,
num_groups=32, num_groups=32,
stride=1, stride=1,
scale=scale), scale=scale),
...@@ -153,9 +126,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -153,9 +126,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws22 = self.add_sublayer( dws22 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(64 * scale), in_channels=int(64 * scale),
num_filters1=64, out_channels1=64,
num_filters2=128, out_channels2=128,
num_groups=64, num_groups=64,
stride=2, stride=2,
scale=scale), scale=scale),
...@@ -164,9 +137,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -164,9 +137,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws31 = self.add_sublayer( dws31 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(128 * scale), in_channels=int(128 * scale),
num_filters1=128, out_channels1=128,
num_filters2=128, out_channels2=128,
num_groups=128, num_groups=128,
stride=1, stride=1,
scale=scale), scale=scale),
...@@ -175,9 +148,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -175,9 +148,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws32 = self.add_sublayer( dws32 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(128 * scale), in_channels=int(128 * scale),
num_filters1=128, out_channels1=128,
num_filters2=256, out_channels2=256,
num_groups=128, num_groups=128,
stride=2, stride=2,
scale=scale), scale=scale),
...@@ -186,9 +159,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -186,9 +159,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws41 = self.add_sublayer( dws41 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(256 * scale), in_channels=int(256 * scale),
num_filters1=256, out_channels1=256,
num_filters2=256, out_channels2=256,
num_groups=256, num_groups=256,
stride=1, stride=1,
scale=scale), scale=scale),
...@@ -197,9 +170,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -197,9 +170,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws42 = self.add_sublayer( dws42 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(256 * scale), in_channels=int(256 * scale),
num_filters1=256, out_channels1=256,
num_filters2=512, out_channels2=512,
num_groups=256, num_groups=256,
stride=2, stride=2,
scale=scale), scale=scale),
...@@ -209,9 +182,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -209,9 +182,9 @@ class MobileNetV1(fluid.dygraph.Layer):
for i in range(5): for i in range(5):
tmp = self.add_sublayer( tmp = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(512 * scale), in_channels=int(512 * scale),
num_filters1=512, out_channels1=512,
num_filters2=512, out_channels2=512,
num_groups=512, num_groups=512,
stride=1, stride=1,
scale=scale), scale=scale),
...@@ -220,9 +193,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -220,9 +193,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws56 = self.add_sublayer( dws56 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(512 * scale), in_channels=int(512 * scale),
num_filters1=512, out_channels1=512,
num_filters2=1024, out_channels2=1024,
num_groups=512, num_groups=512,
stride=2, stride=2,
scale=scale), scale=scale),
...@@ -231,9 +204,9 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -231,9 +204,9 @@ class MobileNetV1(fluid.dygraph.Layer):
dws6 = self.add_sublayer( dws6 = self.add_sublayer(
sublayer=DepthwiseSeparable( sublayer=DepthwiseSeparable(
num_channels=int(1024 * scale), in_channels=int(1024 * scale),
num_filters1=1024, out_channels1=1024,
num_filters2=1024, out_channels2=1024,
num_groups=1024, num_groups=1024,
stride=1, stride=1,
scale=scale), scale=scale),
...@@ -241,29 +214,23 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -241,29 +214,23 @@ class MobileNetV1(fluid.dygraph.Layer):
self.dwsl.append(dws6) self.dwsl.append(dws6)
if with_pool: if with_pool:
self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True) self.pool2d_avg = nn.AdaptiveAvgPool2d(1)
if num_classes > -1: if num_classes > 0:
self.out = Linear( self.fc = nn.Linear(int(1024 * scale), num_classes)
int(1024 * scale),
num_classes, def forward(self, x):
act=classifier_activation, x = self.conv1(x)
param_attr=ParamAttr(
initializer=MSRA(), name=self.full_name() + "fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
def forward(self, inputs):
y = self.conv1(inputs)
for dws in self.dwsl: for dws in self.dwsl:
y = dws(y) x = dws(x)
if self.with_pool: if self.with_pool:
y = self.pool2d_avg(y) x = self.pool2d_avg(x)
if self.num_classes > 0: if self.num_classes > 0:
y = fluid.layers.reshape(y, shape=[-1, 1024]) x = paddle.flatten(x, 1)
y = self.out(y) x = self.fc(x)
return y return x
def _mobilenet(arch, pretrained=False, **kwargs): def _mobilenet(arch, pretrained=False, **kwargs):
...@@ -275,7 +242,7 @@ def _mobilenet(arch, pretrained=False, **kwargs): ...@@ -275,7 +242,7 @@ def _mobilenet(arch, pretrained=False, **kwargs):
model_urls[arch][1]) model_urls[arch][1])
assert weight_path.endswith( assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams" '.pdparams'), "suffix of weight must be .pdparams"
param, _ = fluid.load_dygraph(weight_path) param, _ = paddle.load(weight_path)
model.load_dict(param) model.load_dict(param)
return model return model
......
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr import paddle.nn as nn
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear import paddle.nn.functional as F
from paddle.utils.download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
...@@ -25,221 +25,166 @@ __all__ = ['MobileNetV2', 'mobilenet_v2'] ...@@ -25,221 +25,166 @@ __all__ = ['MobileNetV2', 'mobilenet_v2']
model_urls = { model_urls = {
'mobilenetv2_1.0': 'mobilenetv2_1.0':
('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams', ('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
'8ff74f291f72533f2a7956a4efff9d88') '0340af0a901346c8d46f4529882fb63d')
} }
class ConvBNLayer(fluid.dygraph.Layer): def _make_divisible(v, divisor, min_value=None):
def __init__(self, if min_value is None:
num_channels, min_value = divisor
filter_size, new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
num_filters,
stride,
padding,
channels=None,
num_groups=1,
use_cudnn=True):
super(ConvBNLayer, self).__init__()
tmp_param = ParamAttr(name=self.full_name() + "_weights")
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=tmp_param,
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
moving_mean_name=self.full_name() + "_bn" + '_mean',
moving_variance_name=self.full_name() + "_bn" + '_variance')
def forward(self, inputs, if_act=True):
y = self._conv(inputs)
y = self._batch_norm(y)
if if_act:
y = fluid.layers.relu6(y)
return y
class InvertedResidualUnit(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_in_filter,
num_filters,
stride,
filter_size,
padding,
expansion_factor, ):
super(InvertedResidualUnit, self).__init__()
num_expfilter = int(round(num_in_filter * expansion_factor))
self._expand_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
self._bottleneck_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=padding,
num_groups=num_expfilter,
use_cudnn=False)
self._linear_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
def forward(self, inputs, ifshortcut):
y = self._expand_conv(inputs, if_act=True)
y = self._bottleneck_conv(y, if_act=True)
y = self._linear_conv(y, if_act=False)
if ifshortcut:
y = fluid.layers.elementwise_add(inputs, y)
return y
class InvresiBlocks(fluid.dygraph.Layer):
def __init__(self, in_c, t, c, n, s):
super(InvresiBlocks, self).__init__()
self._first_block = InvertedResidualUnit(
num_channels=in_c,
num_in_filter=in_c,
num_filters=c,
stride=s,
filter_size=3,
padding=1,
expansion_factor=t)
self._inv_blocks = []
for i in range(1, n):
tmp = self.add_sublayer(
sublayer=InvertedResidualUnit(
num_channels=c,
num_in_filter=c,
num_filters=c,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t),
name=self.full_name() + "_" + str(i + 1))
self._inv_blocks.append(tmp)
def forward(self, inputs):
y = self._first_block(inputs, ifshortcut=False)
for inv_block in self._inv_blocks:
y = inv_block(y, ifshortcut=True)
return y
class MobileNetV2(fluid.dygraph.Layer):
"""MobileNetV2 model from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples:
.. code-block:: python
from paddle.vision.models import MobileNetV2 if new_v < 0.9 * v:
new_v += divisor
return new_v
model = MobileNetV2()
"""
class ConvBNReLU(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
kernel_size=3,
stride=1,
groups=1,
norm_layer=nn.BatchNorm2d):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias_attr=False),
norm_layer(out_planes),
nn.ReLU6())
class InvertedResidual(nn.Layer):
def __init__(self, def __init__(self,
scale=1.0, inp,
num_classes=1000, oup,
with_pool=True, stride,
classifier_activation='softmax'): expand_ratio,
norm_layer=nn.BatchNorm2d):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(
ConvBNReLU(
inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
layers.extend([
ConvBNReLU(
hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
norm_layer=norm_layer),
nn.Conv2d(
hidden_dim, oup, 1, 1, 0, bias_attr=False),
norm_layer(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Layer):
def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
"""MobileNetV2 model from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
from paddle.vision.models import MobileNetV2
model = MobileNetV2()
"""
super(MobileNetV2, self).__init__() super(MobileNetV2, self).__init__()
self.scale = scale
self.num_classes = num_classes self.num_classes = num_classes
self.with_pool = with_pool self.with_pool = with_pool
input_channel = 32
last_channel = 1280
block = InvertedResidual
round_nearest = 8
norm_layer = nn.BatchNorm2d
inverted_residual_setting = [
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
bottleneck_params_list = [ input_channel = _make_divisible(input_channel * scale, round_nearest)
(1, 16, 1, 1), self.last_channel = _make_divisible(last_channel * max(1.0, scale),
(6, 24, 2, 2), round_nearest)
(6, 32, 3, 2), features = [
(6, 64, 4, 2), ConvBNReLU(
(6, 96, 3, 1), 3, input_channel, stride=2, norm_layer=norm_layer)
(6, 160, 3, 2),
(6, 320, 1, 1),
] ]
self._conv1 = ConvBNLayer( for t, c, n, s in inverted_residual_setting:
num_channels=3, output_channel = _make_divisible(c * scale, round_nearest)
num_filters=int(32 * scale), for i in range(n):
filter_size=3, stride = s if i == 0 else 1
stride=2, features.append(
padding=1) block(
input_channel,
self._invl = [] output_channel,
i = 1 stride,
in_c = int(32 * scale) expand_ratio=t,
for layer_setting in bottleneck_params_list: norm_layer=norm_layer))
t, c, n, s = layer_setting input_channel = output_channel
i += 1
tmp = self.add_sublayer( features.append(
sublayer=InvresiBlocks( ConvBNReLU(
in_c=in_c, t=t, c=int(c * scale), n=n, s=s), input_channel,
name='conv' + str(i)) self.last_channel,
self._invl.append(tmp) kernel_size=1,
in_c = int(c * scale) norm_layer=norm_layer))
self._out_c = int(1280 * scale) if scale > 1.0 else 1280 self.features = nn.Sequential(*features)
self._conv9 = ConvBNLayer(
num_channels=in_c,
num_filters=self._out_c,
filter_size=1,
stride=1,
padding=0)
if with_pool: if with_pool:
self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True) self.pool2d_avg = nn.AdaptiveAvgPool2d(1)
if num_classes > 0: if self.num_classes > 0:
tmp_param = ParamAttr(name=self.full_name() + "fc10_weights") self.classifier = nn.Sequential(
self._fc = Linear( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes))
self._out_c,
num_classes, def forward(self, x):
act=classifier_activation, x = self.features(x)
param_attr=tmp_param,
bias_attr=ParamAttr(name="fc10_offset"))
def forward(self, inputs):
y = self._conv1(inputs, if_act=True)
for inv in self._invl:
y = inv(y)
y = self._conv9(y, if_act=True)
if self.with_pool: if self.with_pool:
y = self._pool2d_avg(y) x = self.pool2d_avg(x)
if self.num_classes > 0: if self.num_classes > 0:
y = fluid.layers.reshape(y, shape=[-1, self._out_c]) x = paddle.flatten(x, 1)
y = self._fc(y) x = self.classifier(x)
return y return x
def _mobilenet(arch, pretrained=False, **kwargs): def _mobilenet(arch, pretrained=False, **kwargs):
...@@ -251,7 +196,7 @@ def _mobilenet(arch, pretrained=False, **kwargs): ...@@ -251,7 +196,7 @@ def _mobilenet(arch, pretrained=False, **kwargs):
model_urls[arch][1]) model_urls[arch][1])
assert weight_path.endswith( assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams" '.pdparams'), "suffix of weight must be .pdparams"
param, _ = fluid.load_dygraph(weight_path) param, _ = paddle.load(weight_path)
model.load_dict(param) model.load_dict(param)
return model return model
......
...@@ -15,11 +15,8 @@ ...@@ -15,11 +15,8 @@
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import math import paddle
import paddle.fluid as fluid import paddle.nn as nn
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential
from paddle.utils.download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
...@@ -29,143 +26,129 @@ __all__ = [ ...@@ -29,143 +26,129 @@ __all__ = [
model_urls = { model_urls = {
'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams', 'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams',
'0ba53eea9bc970962d0ef96f7b94057e'), 'cf548f46534aa3560945be4b95cd11c4'),
'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams', 'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams',
'46bc9f7c3dd2e55b7866285bee91eff3'), '8d2275cf8706028345f78ac0e1d31969'),
'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams', 'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
'5ce890a9ad386df17cf7fe2313dca0a1'), 'ca6f485ee1ab0492d38f323885b0ad80'),
'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams', 'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams',
'fb07a451df331e4b0bb861ed97c3a9b9'), '02f35f034ca3858e1e54d4036443c92d'),
'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams', 'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',
'f9c700f26d3644bb76ad2226ed5f5713'), '7ad16a2f1e7333859ff986138630fd7a'),
} }
class ConvBNLayer(fluid.dygraph.Layer): class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, def __init__(self,
num_channels, inplanes,
num_filters, planes,
filter_size,
stride=1, stride=1,
downsample=None,
groups=1, groups=1,
act=None): base_width=64,
super(ConvBNLayer, self).__init__() dilation=1,
norm_layer=None):
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
self._batch_norm = BatchNorm(num_filters, act=act)
def forward(self, inputs):
x = self._conv(inputs)
x = self._batch_norm(x)
return x
class BasicBlock(fluid.dygraph.Layer):
"""residual block of resnet18 and resnet34
"""
expansion = 1
def __init__(self, num_channels, num_filters, stride, shortcut=True):
super(BasicBlock, self).__init__() super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv0 = ConvBNLayer( if dilation > 1:
num_channels=num_channels, raise NotImplementedError(
num_filters=num_filters, "Dilation > 1 not supported in BasicBlock")
filter_size=3,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
if not shortcut: self.conv1 = nn.Conv2d(
self.short = ConvBNLayer( inplanes, planes, 3, padding=1, stride=stride, bias_attr=False)
num_channels=num_channels, self.bn1 = norm_layer(planes)
num_filters=num_filters, self.relu = nn.ReLU()
filter_size=1, self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias_attr=False)
stride=stride) self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
self.shortcut = shortcut def forward(self, x):
identity = x
def forward(self, inputs): out = self.conv1(x)
y = self.conv0(inputs) out = self.bn1(out)
conv1 = self.conv1(y) out = self.relu(out)
if self.shortcut: out = self.conv2(out)
short = inputs out = self.bn2(out)
else:
short = self.short(inputs)
y = short + conv1 if self.downsample is not None:
identity = self.downsample(x)
return fluid.layers.relu(y) out += identity
out = self.relu(out)
return out
class BottleneckBlock(fluid.dygraph.Layer):
"""residual block of resnet50, resnet101 amd resnet152 class BottleneckBlock(nn.Layer):
"""
expansion = 4 expansion = 4
def __init__(self, num_channels, num_filters, stride, shortcut=True): def __init__(self,
inplanes,
planes,
stride=1,
downsample=None,
groups=1,
base_width=64,
dilation=1,
norm_layer=None):
super(BottleneckBlock, self).__init__() super(BottleneckBlock, self).__init__()
if norm_layer is None:
self.conv0 = ConvBNLayer( norm_layer = nn.BatchNorm2d
num_channels=num_channels, width = int(planes * (base_width / 64.)) * groups
num_filters=num_filters,
filter_size=1, self.conv1 = nn.Conv2d(inplanes, width, 1, bias_attr=False)
act='relu') self.bn1 = norm_layer(width)
self.conv1 = ConvBNLayer(
num_channels=num_filters, self.conv2 = nn.Conv2d(
num_filters=num_filters, width,
filter_size=3, width,
3,
padding=dilation,
stride=stride, stride=stride,
act='relu') groups=groups,
self.conv2 = ConvBNLayer( dilation=dilation,
num_channels=num_filters, bias_attr=False)
num_filters=num_filters * self.expansion, self.bn2 = norm_layer(width)
filter_size=1,
act=None)
if not shortcut: self.conv3 = nn.Conv2d(
self.short = ConvBNLayer( width, planes * self.expansion, 1, bias_attr=False)
num_channels=num_channels, self.bn3 = norm_layer(planes * self.expansion)
num_filters=num_filters * self.expansion, self.relu = nn.ReLU()
filter_size=1, self.downsample = downsample
stride=stride) self.stride = stride
self.shortcut = shortcut def forward(self, x):
identity = x
self._num_channels_out = num_filters * self.expansion out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
def forward(self, inputs): out = self.conv2(out)
x = self.conv0(inputs) out = self.bn2(out)
conv1 = self.conv1(x) out = self.relu(out)
conv2 = self.conv2(conv1)
if self.shortcut: out = self.conv3(out)
short = inputs out = self.bn3(out)
else:
short = self.short(inputs)
x = fluid.layers.elementwise_add(x=short, y=conv2) if self.downsample is not None:
identity = self.downsample(x)
return fluid.layers.relu(x) out += identity
out = self.relu(out)
return out
class ResNet(fluid.dygraph.Layer):
class ResNet(nn.Layer):
"""ResNet model from """ResNet model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
...@@ -175,7 +158,6 @@ class ResNet(fluid.dygraph.Layer): ...@@ -175,7 +158,6 @@ class ResNet(fluid.dygraph.Layer):
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True. with_pool (bool): use pool before the last fc layer or not. Default: True.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -189,82 +171,87 @@ class ResNet(fluid.dygraph.Layer): ...@@ -189,82 +171,87 @@ class ResNet(fluid.dygraph.Layer):
""" """
def __init__(self, def __init__(self, block, depth, num_classes=1000, with_pool=True):
Block,
depth=50,
num_classes=1000,
with_pool=True,
classifier_activation='softmax'):
super(ResNet, self).__init__() super(ResNet, self).__init__()
layer_cfg = {
self.num_classes = num_classes
self.with_pool = with_pool
layer_config = {
18: [2, 2, 2, 2], 18: [2, 2, 2, 2],
34: [3, 4, 6, 3], 34: [3, 4, 6, 3],
50: [3, 4, 6, 3], 50: [3, 4, 6, 3],
101: [3, 4, 23, 3], 101: [3, 4, 23, 3],
152: [3, 8, 36, 3], 152: [3, 8, 36, 3]
} }
assert depth in layer_config.keys(), \ layers = layer_cfg[depth]
"supported depth are {} but input layer is {}".format( self.num_classes = num_classes
layer_config.keys(), depth) self.with_pool = with_pool
self._norm_layer = nn.BatchNorm2d
layers = layer_config[depth]
self.inplanes = 64
in_channels = 64 self.dilation = 1
out_channels = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.layers = []
for idx, num_blocks in enumerate(layers):
blocks = []
shortcut = False
for b in range(num_blocks):
if b == 1:
in_channels = out_channels[idx] * Block.expansion
block = Block(
num_channels=in_channels,
num_filters=out_channels[idx],
stride=2 if b == 0 and idx != 0 else 1,
shortcut=shortcut)
blocks.append(block)
shortcut = True
layer = self.add_sublayer("layer_{}".format(idx),
Sequential(*blocks))
self.layers.append(layer)
self.conv1 = nn.Conv2d(
3,
self.inplanes,
kernel_size=7,
stride=2,
padding=3,
bias_attr=False)
self.bn1 = self._norm_layer(self.inplanes)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
if with_pool: if with_pool:
self.global_pool = Pool2D( self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
pool_size=7, pool_type='avg', global_pooling=True)
if num_classes > 0: if num_classes > 0:
stdv = 1.0 / math.sqrt(out_channels[-1] * Block.expansion * 1.0) self.fc = nn.Linear(512 * block.expansion, num_classes)
self.fc_input_dim = out_channels[-1] * Block.expansion * 1 * 1
self.fc = Linear( def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
self.fc_input_dim, norm_layer = self._norm_layer
num_classes, downsample = None
act=classifier_activation, previous_dilation = self.dilation
param_attr=fluid.param_attr.ParamAttr( if dilate:
initializer=fluid.initializer.Uniform(-stdv, stdv))) self.dilation *= stride
stride = 1
def forward(self, inputs): if stride != 1 or self.inplanes != planes * block.expansion:
x = self.conv(inputs) downsample = nn.Sequential(
x = self.pool(x) nn.Conv2d(
for layer in self.layers: self.inplanes,
x = layer(x) planes * block.expansion,
1,
if self.with_pool: stride=stride,
x = self.global_pool(x) bias_attr=False),
norm_layer(planes * block.expansion), )
if self.num_classes > -1:
x = fluid.layers.reshape(x, shape=[-1, self.fc_input_dim]) layers = []
layers.append(
block(self.inplanes, planes, stride, downsample, 1, 64,
previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.with_pool > 0:
x = self.avgpool(x)
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x) x = self.fc(x)
return x return x
...@@ -277,7 +264,7 @@ def _resnet(arch, Block, depth, pretrained, **kwargs): ...@@ -277,7 +264,7 @@ def _resnet(arch, Block, depth, pretrained, **kwargs):
model_urls[arch][1]) model_urls[arch][1])
assert weight_path.endswith( assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams" '.pdparams'), "suffix of weight must be .pdparams"
param, _ = fluid.load_dygraph(weight_path) param, _ = paddle.load(weight_path)
model.set_dict(param) model.set_dict(param)
return model return model
......
...@@ -12,9 +12,8 @@ ...@@ -12,9 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import paddle.fluid as fluid import paddle
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, ReLU, Softmax import paddle.nn as nn
from paddle.fluid.dygraph.container import Sequential
from paddle.utils.download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
...@@ -28,39 +27,18 @@ __all__ = [ ...@@ -28,39 +27,18 @@ __all__ = [
model_urls = { model_urls = {
'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams', 'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
'c788f453a3b999063e8da043456281ee') '89bbffc0f87d260be9b8cdc169c991c4')
} }
class Classifier(fluid.dygraph.Layer): class VGG(nn.Layer):
def __init__(self, num_classes, classifier_activation='softmax'):
super(Classifier, self).__init__()
self.linear1 = Linear(512 * 7 * 7, 4096)
self.linear2 = Linear(4096, 4096)
self.linear3 = Linear(4096, num_classes)
self.act = Softmax() #Todo: accept any activation
def forward(self, x):
x = self.linear1(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
x = self.linear2(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
x = self.linear3(x)
out = self.act(x)
return out
class VGG(fluid.dygraph.Layer):
"""VGG model from """VGG model from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args: Args:
features (fluid.dygraph.Layer): vgg features create by function make_layers. features (nn.Layer): vgg features create by function make_layers.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -76,44 +54,41 @@ class VGG(fluid.dygraph.Layer): ...@@ -76,44 +54,41 @@ class VGG(fluid.dygraph.Layer):
""" """
def __init__(self, def __init__(self, features, num_classes=1000):
features,
num_classes=1000,
classifier_activation='softmax'):
super(VGG, self).__init__() super(VGG, self).__init__()
self.features = features self.features = features
self.num_classes = num_classes self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
if num_classes > 0: nn.Linear(512 * 7 * 7, 4096),
classifier = Classifier(num_classes, classifier_activation) nn.ReLU(),
self.classifier = self.add_sublayer("classifier", nn.Dropout(),
Sequential(classifier)) nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, num_classes), )
def forward(self, x): def forward(self, x):
x = self.features(x) x = self.features(x)
x = self.avgpool(x)
if self.num_classes > 0: x = paddle.flatten(x, 1)
x = fluid.layers.flatten(x, 1) x = self.classifier(x)
x = self.classifier(x)
return x return x
def make_layers(cfg, batch_norm=False): def make_layers(cfg, batch_norm=False):
layers = [] layers = []
in_channels = 3 in_channels = 3
for v in cfg: for v in cfg:
if v == 'M': if v == 'M':
layers += [Pool2D(pool_size=2, pool_stride=2)] layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else: else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm: if batch_norm:
conv2d = Conv2d(in_channels, v, kernel_size=3, padding=1) layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
layers += [conv2d, BatchNorm(v), ReLU()]
else: else:
conv2d = Conv2d(in_channels, v, kernel_size=3, padding=1) layers += [conv2d, nn.ReLU()]
layers += [conv2d, ReLU()]
in_channels = v in_channels = v
return Sequential(*layers) return nn.Sequential(*layers)
cfgs = { cfgs = {
...@@ -144,7 +119,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, **kwargs): ...@@ -144,7 +119,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
model_urls[arch][1]) model_urls[arch][1])
assert weight_path.endswith( assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams" '.pdparams'), "suffix of weight must be .pdparams"
param, _ = fluid.load_dygraph(weight_path) param, _ = paddle.load(weight_path)
model.load_dict(param) model.load_dict(param)
return model return model
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册