Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b1ba98ca
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1ba98ca
编写于
4月 13, 2022
作者:
Z
zhangyikun02
提交者:
jzhang533
4月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support bce_loss and bce_loss_grad in XPU, test=kunlun (#41610)
上级
58f6d459
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
149 addition
and
0 deletion
+149
-0
paddle/fluid/operators/bce_loss_op_xpu.cc
paddle/fluid/operators/bce_loss_op_xpu.cc
+70
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+3
-0
python/paddle/fluid/tests/unittests/xpu/test_bce_loss_op_xpu.py
.../paddle/fluid/tests/unittests/xpu/test_bce_loss_op_xpu.py
+76
-0
未找到文件。
paddle/fluid/operators/bce_loss_op_xpu.cc
0 → 100644
浏览文件 @
b1ba98ca
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
XPUBCELossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_numel
=
x
->
numel
();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
bce_loss
<
T
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
labels
->
data
<
T
>
(),
out
->
data
<
T
>
(),
x_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bce_loss"
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
XPUBCELossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dout
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_numel
=
x
->
numel
();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
bce_loss_grad
<
T
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
labels
->
data
<
T
>
(),
dout
->
data
<
T
>
(),
dx
->
data
<
T
>
(),
x_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bce_loss_grad"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
bce_loss
,
ops
::
XPUBCELossKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
bce_loss_grad
,
ops
::
XPUBCELossGradKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif // PADDLE_WITH_XPU
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
b1ba98ca
...
@@ -43,6 +43,9 @@ XPUOpMap& get_kl2_ops() {
...
@@ -43,6 +43,9 @@ XPUOpMap& get_kl2_ops() {
{
"batch_norm_grad"
,
{
"batch_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"batch_norm"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"batch_norm"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"bce_loss_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"bce_loss"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"bilinear_interp_v2"
,
{
"bilinear_interp_v2"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"bilinear_interp_v2_grad"
,
{
"bilinear_interp_v2_grad"
,
...
...
python/paddle/fluid/tests/unittests/xpu/test_bce_loss_op_xpu.py
0 → 100644
浏览文件 @
b1ba98ca
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
def
bce_loss
(
input
,
label
):
return
-
1
*
(
label
*
np
.
log
(
input
)
+
(
1.
-
label
)
*
np
.
log
(
1.
-
input
))
class
XPUTestBceLossOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'bce_loss'
self
.
use_dynamic_create_class
=
False
class
TestBceLossOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bce_loss"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_test_case
()
input_np
=
np
.
random
.
uniform
(
0.1
,
0.8
,
self
.
shape
).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
2
,
self
.
shape
).
astype
(
self
.
dtype
)
output_np
=
bce_loss
(
input_np
,
label_np
)
self
.
inputs
=
{
'X'
:
input_np
,
'Label'
:
label_np
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
shape
=
[
10
,
10
]
class
TestBceLossOpCase1
(
TestBceLossOp
):
def
init_test_cast
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
class
TestBceLossOpCase2
(
TestBceLossOp
):
def
init_test_cast
(
self
):
self
.
shape
=
[
2
,
3
,
20
]
support_types
=
get_xpu_op_support_types
(
'bce_loss'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestBceLossOp
,
stype
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录