提交 b1ba98ca 编写于 作者: Z zhangyikun02 提交者: jzhang533

support bce_loss and bce_loss_grad in XPU, test=kunlun (#41610)

上级 58f6d459
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class XPUBCELossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* labels = context.Input<Tensor>("Label");
auto* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto x_numel = x->numel();
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::bce_loss<T>(dev_ctx.x_context(), x->data<T>(),
labels->data<T>(), out->data<T>(), x_numel);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bce_loss");
}
};
template <typename DeviceContext, typename T>
class XPUBCELossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* labels = context.Input<Tensor>("Label");
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(context.GetPlace());
auto x_numel = x->numel();
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::bce_loss_grad<T>(dev_ctx.x_context(), x->data<T>(),
labels->data<T>(), dout->data<T>(),
dx->data<T>(), x_numel);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bce_loss_grad");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
bce_loss, ops::XPUBCELossKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
bce_loss_grad,
ops::XPUBCELossGradKernel<paddle::platform::XPUDeviceContext, float>);
#endif // PADDLE_WITH_XPU
......@@ -43,6 +43,9 @@ XPUOpMap& get_kl2_ops() {
{"batch_norm_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"batch_norm", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"bce_loss_grad",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"bce_loss", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"bilinear_interp_v2",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"bilinear_interp_v2_grad",
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
paddle.enable_static()
def bce_loss(input, label):
return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input))
class XPUTestBceLossOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'bce_loss'
self.use_dynamic_create_class = False
class TestBceLossOp(XPUOpTest):
def setUp(self):
self.op_type = "bce_loss"
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.init_test_case()
input_np = np.random.uniform(0.1, 0.8,
self.shape).astype(self.dtype)
label_np = np.random.randint(0, 2, self.shape).astype(self.dtype)
output_np = bce_loss(input_np, label_np)
self.inputs = {'X': input_np, 'Label': label_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
def init_test_case(self):
self.shape = [10, 10]
class TestBceLossOpCase1(TestBceLossOp):
def init_test_cast(self):
self.shape = [2, 3, 4, 5]
class TestBceLossOpCase2(TestBceLossOp):
def init_test_cast(self):
self.shape = [2, 3, 20]
support_types = get_xpu_op_support_types('bce_loss')
for stype in support_types:
create_test_class(globals(), XPUTestBceLossOp, stype)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册