Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b0630938
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b0630938
编写于
7月 20, 2018
作者:
Y
Yu Yang
提交者:
GitHub
7月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12149 from reyoung/feature/combine_open_files_and_double_buffer
Change and polish readers
上级
a3ac54b6
8c3cd420
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
668 addition
and
329 deletion
+668
-329
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+6
-1
paddle/fluid/framework/lod_tensor.cc
paddle/fluid/framework/lod_tensor.cc
+15
-12
paddle/fluid/framework/lod_tensor.h
paddle/fluid/framework/lod_tensor.h
+3
-2
paddle/fluid/framework/lod_tensor_test.cc
paddle/fluid/framework/lod_tensor_test.cc
+3
-2
paddle/fluid/framework/reader.cc
paddle/fluid/framework/reader.cc
+2
-1
paddle/fluid/framework/reader.h
paddle/fluid/framework/reader.h
+4
-2
paddle/fluid/operators/reader/CMakeLists.txt
paddle/fluid/operators/reader/CMakeLists.txt
+3
-2
paddle/fluid/operators/reader/buffered_reader.cc
paddle/fluid/operators/reader/buffered_reader.cc
+96
-0
paddle/fluid/operators/reader/buffered_reader.h
paddle/fluid/operators/reader/buffered_reader.h
+66
-0
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
.../fluid/operators/reader/create_double_buffer_reader_op.cc
+3
-119
paddle/fluid/operators/reader/create_py_reader_op.cc
paddle/fluid/operators/reader/create_py_reader_op.cc
+2
-0
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
.../fluid/operators/reader/create_recordio_file_reader_op.cc
+7
-4
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
+1
-1
paddle/fluid/operators/reader/open_files_op.cc
paddle/fluid/operators/reader/open_files_op.cc
+187
-120
paddle/fluid/recordio/scanner.cc
paddle/fluid/recordio/scanner.cc
+1
-0
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+1
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+142
-36
python/paddle/fluid/tests/demo/pyreader.py
python/paddle/fluid/tests/demo/pyreader.py
+95
-0
python/paddle/fluid/tests/demo/text_classification/convert_data_to_recordio.py
...ests/demo/text_classification/convert_data_to_recordio.py
+4
-1
python/paddle/fluid/tests/demo/text_classification/train.py
python/paddle/fluid/tests/demo/text_classification/train.py
+2
-4
python/paddle/fluid/tests/unittests/test_data_balance.py
python/paddle/fluid/tests/unittests/test_data_balance.py
+6
-3
python/paddle/fluid/tests/unittests/test_multi_file_reader.py
...on/paddle/fluid/tests/unittests/test_multi_file_reader.py
+9
-6
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+2
-6
python/paddle/fluid/tests/unittests/test_py_reader_push_pop.py
...n/paddle/fluid/tests/unittests/test_py_reader_push_pop.py
+2
-2
python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py
...le/fluid/tests/unittests/test_py_reader_using_executor.py
+4
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
b0630938
...
...
@@ -180,13 +180,13 @@ paddle.fluid.layers.log ArgSpec(args=['x'], varargs=None, keywords=None, default
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', '
for_parallel'], varargs=None, keywords=None, defaults=(1, None, 1, Tru
e))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', '
is_test'], varargs=None, keywords=None, defaults=(None, None, 1, Non
e))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shuffle ArgSpec(args=['reader', 'buffer_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.batch ArgSpec(args=['reader', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.double_buffer ArgSpec(args=['reader', 'place', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.random_data_generator ArgSpec(args=['low', 'high', 'shapes', 'lod_levels', 'for_parallel'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels'
], varargs=None, keywords=None, defaults=(None,
))
paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels'
, 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, None, True
))
paddle.fluid.layers.Preprocessor.__init__ ArgSpec(args=['self', 'reader', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Preprocessor.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.layers.Preprocessor.inputs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
b0630938
...
...
@@ -171,7 +171,12 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
for
(
size_t
i
=
0
;
i
<
fetch_tensors
.
size
();
++
i
)
{
auto
&
var_name
=
fetch_tensors
[
i
];
auto
&
vars
=
fetched_vars
.
at
(
var_name
);
auto
fetched_var_it
=
fetched_vars
.
find
(
var_name
);
PADDLE_ENFORCE
(
fetched_var_it
!=
fetched_vars
.
end
(),
"Cannot find fetched variable.(Perhaps the main_program "
"is not set to ParallelExecutor)"
);
auto
&
vars
=
fetched_var_it
->
second
;
temp_nodes
->
emplace_back
(
new
ir
::
Node
(
"fetch"
,
ir
::
Node
::
Type
::
kOperation
));
auto
*
op
=
new
FetchOpHandle
(
temp_nodes
->
back
().
get
(),
fetch_data
,
i
,
...
...
paddle/fluid/framework/lod_tensor.cc
浏览文件 @
b0630938
...
...
@@ -312,19 +312,22 @@ void WriteToRecordIO(recordio::Writer *writer,
writer
->
Write
(
buffer
.
str
());
}
std
::
vector
<
LoDTensor
>
ReadFromRecordIO
(
recordio
::
Scanner
*
scanner
,
const
platform
::
DeviceContext
&
dev_ctx
)
{
std
::
vector
<
LoDTensor
>
result
;
if
(
scanner
->
HasNext
())
{
std
::
istringstream
sin
(
scanner
->
Next
());
uint32_t
sz
;
sin
.
read
(
reinterpret_cast
<
char
*>
(
&
sz
),
sizeof
(
uint32_t
));
result
.
resize
(
sz
);
for
(
uint32_t
i
=
0
;
i
<
sz
;
++
i
)
{
DeserializeFromStream
(
sin
,
&
result
[
i
],
dev_ctx
);
}
bool
ReadFromRecordIO
(
recordio
::
Scanner
*
scanner
,
const
platform
::
DeviceContext
&
dev_ctx
,
std
::
vector
<
LoDTensor
>
*
result_ptr
)
{
if
(
!
scanner
->
HasNext
())
{
return
false
;
}
return
result
;
std
::
istringstream
sin
(
scanner
->
Next
());
uint32_t
sz
;
sin
.
read
(
reinterpret_cast
<
char
*>
(
&
sz
),
sizeof
(
uint32_t
));
auto
&
result
=
*
result_ptr
;
result
.
resize
(
sz
);
for
(
uint32_t
i
=
0
;
i
<
sz
;
++
i
)
{
DeserializeFromStream
(
sin
,
&
result
[
i
],
dev_ctx
);
}
return
true
;
}
std
::
vector
<
LoDTensor
>
LoDTensor
::
SplitLoDTensor
(
...
...
paddle/fluid/framework/lod_tensor.h
浏览文件 @
b0630938
...
...
@@ -223,8 +223,9 @@ extern void WriteToRecordIO(recordio::Writer* writer,
const
std
::
vector
<
LoDTensor
>&
tensor
,
const
platform
::
DeviceContext
&
dev_ctx
);
extern
std
::
vector
<
LoDTensor
>
ReadFromRecordIO
(
recordio
::
Scanner
*
scanner
,
const
platform
::
DeviceContext
&
dev_ctx
);
extern
bool
ReadFromRecordIO
(
recordio
::
Scanner
*
scanner
,
const
platform
::
DeviceContext
&
dev_ctx
,
std
::
vector
<
LoDTensor
>*
result_ptr
);
/*
* Convert between length-based LoD and offset-based LoD.
...
...
paddle/fluid/framework/lod_tensor_test.cc
浏览文件 @
b0630938
...
...
@@ -301,11 +301,12 @@ static void TestRecordIO() {
{
std
::
unique_ptr
<
std
::
istream
>
stream_ptr
(
stream
);
recordio
::
Scanner
scanner
(
std
::
move
(
stream_ptr
));
auto
tensors
=
ReadFromRecordIO
(
&
scanner
,
ctx
);
std
::
vector
<
framework
::
LoDTensor
>
tensors
;
ASSERT_TRUE
(
ReadFromRecordIO
(
&
scanner
,
ctx
,
&
tensors
));
ASSERT_EQ
(
tensors
.
size
(),
static_cast
<
size_t
>
(
2
));
assert_tensor_ok
(
tensors
[
0
]);
assert_tensor_ok
(
tensors
[
1
]);
tensors
=
ReadFromRecordIO
(
&
scanner
,
ctx
);
ASSERT_TRUE
(
ReadFromRecordIO
(
&
scanner
,
ctx
,
&
tensors
)
);
ASSERT_EQ
(
tensors
.
size
(),
static_cast
<
size_t
>
(
2
));
assert_tensor_ok
(
tensors
[
0
]);
assert_tensor_ok
(
tensors
[
1
]);
...
...
paddle/fluid/framework/reader.cc
浏览文件 @
b0630938
...
...
@@ -67,7 +67,8 @@ void ReaderBase::Start() {
}
}
ReaderBase
::~
ReaderBase
()
{
Shutdown
();
}
ReaderBase
::~
ReaderBase
()
{}
DecoratedReader
::~
DecoratedReader
()
{
reader_
->
Shutdown
();
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/reader.h
浏览文件 @
b0630938
...
...
@@ -25,8 +25,6 @@
namespace
paddle
{
namespace
framework
{
enum
ReaderStatus
{
kRunning
,
kStopped
};
class
ReaderBase
{
public:
virtual
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
);
...
...
@@ -48,6 +46,8 @@ class ReaderBase {
virtual
void
StartImpl
()
{}
enum
ReaderStatus
{
kRunning
,
kStopped
};
ReaderStatus
status_
{
kRunning
};
mutable
std
::
mutex
mu_
;
...
...
@@ -74,6 +74,8 @@ class DecoratedReader : public ReaderBase,
reader_
->
InsertDecoratedReader
(
shared_from_this
());
}
~
DecoratedReader
();
protected:
void
ShutdownImpl
()
override
{
reader_
->
Shutdown
();
}
...
...
paddle/fluid/operators/reader/CMakeLists.txt
浏览文件 @
b0630938
...
...
@@ -15,12 +15,13 @@ function(reader_library TARGET_NAME)
PARENT_SCOPE
)
endfunction
()
reader_library
(
open_files_op SRCS open_files_op.cc
)
cc_library
(
buffered_reader SRCS buffered_reader.cc DEPS reader simple_threadpool
)
reader_library
(
open_files_op SRCS open_files_op.cc DEPS buffered_reader
)
reader_library
(
create_random_data_generator_op SRCS create_random_data_generator_op.cc
)
reader_library
(
create_shuffle_reader_op SRCS create_shuffle_reader_op.cc
)
reader_library
(
create_batch_reader_op SRCS create_batch_reader_op.cc
)
reader_library
(
create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc
)
reader_library
(
create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc
)
reader_library
(
create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc
DEPS buffered_reader
)
reader_library
(
create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc
)
reader_library
(
create_custom_reader_op SRCS create_custom_reader_op.cc
)
reader_library
(
create_py_reader_op SRCS create_py_reader_op.cc
)
...
...
paddle/fluid/operators/reader/buffered_reader.cc
0 → 100644
浏览文件 @
b0630938
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include <vector>
namespace
paddle
{
namespace
operators
{
namespace
reader
{
BufferedReader
::~
BufferedReader
()
{
reader_
->
Shutdown
();
}
BufferedReader
::
BufferedReader
(
const
std
::
shared_ptr
<
framework
::
ReaderBase
>
&
reader
,
const
platform
::
Place
&
place
,
size_t
buffer_size
)
:
framework
::
DecoratedReader
(
reader
),
thread_pool_
(
1
),
place_
(
place
),
buffer_size_
(
buffer_size
)
{
cpu_buffer_
.
resize
(
buffer_size
);
gpu_buffer_
.
resize
(
buffer_size
);
ReadTillBufferFullAsync
();
}
void
BufferedReader
::
ReadTillBufferFullAsync
()
{
PADDLE_ENFORCE_EQ
(
position_
.
size
(),
0U
);
for
(
size_t
i
=
0
;
i
<
buffer_size_
;
++
i
)
{
ReadAsync
(
i
);
}
}
void
BufferedReader
::
ReadAsync
(
size_t
i
)
{
position_
.
emplace
(
thread_pool_
.
enqueue
([
this
,
i
]()
->
size_t
{
TensorVec
&
cpu
=
cpu_buffer_
[
i
];
reader_
->
ReadNext
(
&
cpu
);
if
(
cpu
.
empty
())
{
return
-
1UL
;
}
if
(
platform
::
is_gpu_place
(
place_
))
{
TensorVec
&
gpu
=
gpu_buffer_
[
i
];
gpu
.
resize
(
cpu
.
size
());
for
(
size_t
i
=
0
;
i
<
cpu
.
size
();
++
i
)
{
framework
::
TensorCopySync
(
cpu
[
i
],
place_
,
&
gpu
[
i
]);
gpu
[
i
].
set_lod
(
cpu
[
i
].
lod
());
}
}
return
i
;
}));
}
void
BufferedReader
::
ShutdownImpl
()
{
reader_
->
Shutdown
();
while
(
!
position_
.
empty
())
{
position_
.
pop
();
}
prev_pos_
=
-
1UL
;
}
void
BufferedReader
::
StartImpl
()
{
reader_
->
Start
();
ReadTillBufferFullAsync
();
}
void
BufferedReader
::
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>
*
out
)
{
if
(
position_
.
empty
())
{
out
->
clear
();
return
;
}
size_t
i
=
position_
.
front
().
get
();
position_
.
pop
();
if
(
i
==
-
1UL
)
{
ReadNextImpl
(
out
);
return
;
}
*
out
=
platform
::
is_gpu_place
(
place_
)
?
gpu_buffer_
[
i
]
:
cpu_buffer_
[
i
];
// Do not push current position into ReadAsync. Push the previous position
// Since all computation in fluid are async, change the data of
// current position may cause data error.
if
(
prev_pos_
!=
-
1Ul
)
{
ReadAsync
(
prev_pos_
);
}
prev_pos_
=
i
;
}
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/buffered_reader.h
0 → 100644
浏览文件 @
b0630938
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <list>
#include <queue>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/reader.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
class
BufferedReader
:
public
framework
::
DecoratedReader
{
using
TensorVec
=
std
::
vector
<
framework
::
LoDTensor
>
;
using
VecFuture
=
std
::
future
<
TensorVec
>
;
public:
BufferedReader
(
const
std
::
shared_ptr
<
framework
::
ReaderBase
>&
reader
,
const
platform
::
Place
&
place
,
size_t
buffer_size
);
~
BufferedReader
()
override
;
private:
void
ReadTillBufferFullAsync
();
void
ReadAsync
(
size_t
i
);
protected:
void
ShutdownImpl
()
override
;
void
StartImpl
()
override
;
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
private:
ThreadPool
thread_pool_
;
platform
::
Place
place_
;
const
size_t
buffer_size_
;
std
::
queue
<
std
::
future
<
size_t
>>
position_
;
// The buffer for reading data.
// NOTE: the simplest way to implement buffered reader is do not use any
// buffer, just read async and create futures as buffer size. However, to
// malloc tensors every time is extremely slow. Here we store all data in
// buffers and prevent alloc every time.
std
::
vector
<
TensorVec
>
cpu_buffer_
;
std
::
vector
<
TensorVec
>
gpu_buffer_
;
size_t
prev_pos_
{
-
1UL
};
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
浏览文件 @
b0630938
...
...
@@ -12,83 +12,12 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thread> // NOLINT
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
// 'Double buffer' means we shall maintain two batches of input data at the same
// time. So the kCacheSize shoul be at least 2.
static
constexpr
size_t
kCacheSize
=
3
;
// There will be two bacthes out of the channel during training:
// 1. the one waiting to be sent to the channel
// 2. the one just be received from the channel, which is also being used by
// subsequent operators.
// So the channel size should be kChacheSize - 2
static
constexpr
size_t
kChannelSize
=
1
;
// kCacheSize - 2
class
DoubleBufferReader
:
public
framework
::
DecoratedReader
{
public:
explicit
DoubleBufferReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
platform
::
Place
target_place
=
platform
::
CPUPlace
())
:
DecoratedReader
(
reader
),
place_
(
target_place
)
{
cpu_tensor_cache_
.
resize
(
kCacheSize
);
gpu_tensor_cache_
.
resize
(
kCacheSize
);
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
for
(
size_t
i
=
0
;
i
<
kCacheSize
;
++
i
)
{
ctxs_
.
emplace_back
(
new
platform
::
CUDADeviceContext
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
)));
}
}
#endif
StartPrefetcher
();
}
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
~
DoubleBufferReader
()
{
EndPrefetcher
();
}
private:
void
ShutdownImpl
()
override
{
EndPrefetcher
();
reader_
->
Shutdown
();
}
void
StartImpl
()
override
{
reader_
->
Start
();
StartPrefetcher
();
}
void
StartPrefetcher
()
{
channel_
=
new
reader
::
BlockingQueue
<
size_t
>
(
kChannelSize
);
prefetcher_
=
std
::
thread
([
this
]
{
PrefetchThreadFunc
();
});
}
void
EndPrefetcher
()
{
channel_
->
Close
();
if
(
prefetcher_
.
joinable
())
{
prefetcher_
.
join
();
}
delete
channel_
;
channel_
=
nullptr
;
}
void
PrefetchThreadFunc
();
std
::
thread
prefetcher_
;
reader
::
BlockingQueue
<
size_t
>*
channel_
;
platform
::
Place
place_
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
cpu_tensor_cache_
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
gpu_tensor_cache_
;
std
::
vector
<
std
::
unique_ptr
<
platform
::
DeviceContext
>>
ctxs_
;
};
class
CreateDoubleBufferReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
...
...
@@ -118,8 +47,8 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
place
=
platform
::
CUDAPlace
(
static_cast
<
int
>
(
num
));
}
out
->
Reset
(
framework
::
MakeDecoratedReader
<
DoubleBufferReader
>
(
underlying_reader
,
place
));
out
->
Reset
(
framework
::
MakeDecoratedReader
<
BufferedReader
>
(
underlying_reader
,
place
,
2
));
}
};
...
...
@@ -146,51 +75,6 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
}
};
void
DoubleBufferReader
::
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
size_t
cached_tensor_id
;
if
(
channel_
->
Receive
(
&
cached_tensor_id
))
{
if
(
platform
::
is_gpu_place
(
place_
))
{
*
out
=
gpu_tensor_cache_
[
cached_tensor_id
];
}
else
{
// CPU place
*
out
=
cpu_tensor_cache_
[
cached_tensor_id
];
}
}
else
{
out
->
clear
();
}
}
void
DoubleBufferReader
::
PrefetchThreadFunc
()
{
VLOG
(
5
)
<<
"A new prefetch thread starts."
;
size_t
cached_tensor_id
=
0
;
while
(
true
)
{
auto
&
cpu_batch
=
cpu_tensor_cache_
[
cached_tensor_id
];
reader_
->
ReadNext
(
&
cpu_batch
);
if
(
cpu_batch
.
empty
())
{
// The underlying reader have no next data.
break
;
}
if
(
platform
::
is_gpu_place
(
place_
))
{
auto
&
gpu_batch
=
gpu_tensor_cache_
[
cached_tensor_id
];
gpu_batch
.
resize
(
cpu_batch
.
size
());
for
(
size_t
i
=
0
;
i
<
cpu_batch
.
size
();
++
i
)
{
// TODO(fengjiayi): Use asynchronous TensorCopy instead
framework
::
TensorCopySync
(
cpu_batch
[
i
],
place_
,
&
gpu_batch
[
i
]);
gpu_batch
[
i
].
set_lod
(
cpu_batch
[
i
].
lod
());
}
}
if
(
!
channel_
->
Send
(
cached_tensor_id
))
{
VLOG
(
5
)
<<
"WARNING: The double buffer channel has been closed. The "
"prefetch thread will terminate."
;
break
;
}
++
cached_tensor_id
;
cached_tensor_id
%=
kCacheSize
;
}
channel_
->
Close
();
VLOG
(
5
)
<<
"Prefetch thread terminates."
;
}
}
// namespace reader
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/reader/create_py_reader_op.cc
浏览文件 @
b0630938
...
...
@@ -33,6 +33,8 @@ class PyReader : public framework::FileReader {
if
(
!
success
)
out
->
clear
();
}
~
PyReader
()
{
queue_
->
Close
();
}
void
Shutdown
()
override
{
queue_
->
Close
();
}
void
Start
()
override
{
queue_
->
ReOpen
();
}
...
...
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
浏览文件 @
b0630938
...
...
@@ -33,11 +33,14 @@ class RecordIOFileReader : public framework::FileReader {
protected:
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
std
::
unique_ptr
<
std
::
lock_guard
<
std
::
mutex
>>
guard
;
if
(
ThreadSafe
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
*
mutex_
);
*
out
=
framework
::
ReadFromRecordIO
(
&
scanner_
,
dev_ctx_
);
}
else
{
*
out
=
framework
::
ReadFromRecordIO
(
&
scanner_
,
dev_ctx_
);
guard
.
reset
(
new
std
::
lock_guard
<
std
::
mutex
>
(
*
mutex_
));
}
bool
ok
=
framework
::
ReadFromRecordIO
(
&
scanner_
,
dev_ctx_
,
out
);
if
(
!
ok
)
{
out
->
clear
();
}
}
...
...
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
浏览文件 @
b0630938
...
...
@@ -48,9 +48,9 @@ class ShuffleReader : public framework::DecoratedReader {
private:
void
ShutdownImpl
()
override
{
reader_
->
Shutdown
();
buffer_
.
clear
();
iteration_pos_
=
0
;
reader_
->
Shutdown
();
}
void
StartImpl
()
override
{
...
...
paddle/fluid/operators/reader/open_files_op.cc
浏览文件 @
b0630938
...
...
@@ -12,150 +12,200 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cmath>
#include <stdexcept>
#include <thread> // NOLINT
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
class
MultiFileReader
:
public
framework
::
ReaderBase
{
class
IReaderContainer
{
public:
MultiFileReader
(
const
std
::
vector
<
std
::
string
>&
file_names
,
size_t
thread_num
,
size_t
buffer_size
)
:
buffer_size_
(
buffer_size
)
{
readers_
.
reserve
(
file_names
.
size
());
for
(
const
std
::
string
&
f_name
:
file_names
)
{
readers_
.
emplace_back
(
CreateReaderByFileName
(
f_name
));
virtual
~
IReaderContainer
()
{}
virtual
void
AppendReader
(
std
::
unique_ptr
<
framework
::
ReaderBase
>&&
readers
)
=
0
;
virtual
void
Stop
()
=
0
;
virtual
void
Start
()
=
0
;
virtual
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
=
0
;
};
class
OrderedReaderContainer
:
public
IReaderContainer
{
public:
void
AppendReader
(
std
::
unique_ptr
<
framework
::
ReaderBase
>&&
reader
)
override
{
pending_
.
emplace
(
std
::
move
(
reader
));
}
void
Stop
()
override
{
while
(
!
pending_
.
empty
())
{
MoveFrontPendingToDone
();
}
prefetchers_
.
resize
(
thread_num
);
StartNewScheduler
();
}
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
;
void
Start
()
override
{
std
::
swap
(
done_
,
pending_
);
}
~
MultiFileReader
()
{
EndScheduler
();
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
if
(
!
pending_
.
empty
())
{
pending_
.
front
()
->
ReadNext
(
out
);
if
(
out
->
empty
())
{
MoveFrontPendingToDone
();
ReadNext
(
out
);
}
}
else
{
out
->
clear
();
}
}
private:
void
ShutdownImpl
()
override
{
EndScheduler
();
}
void
StartImpl
()
override
{
StartNewScheduler
();
}
void
StartNewScheduler
();
void
EndScheduler
();
void
ScheduleThreadFunc
();
void
PrefetchThreadFunc
(
size_t
reader_idx
,
size_t
thread_idx
);
std
::
vector
<
std
::
unique_ptr
<
framework
::
ReaderBase
>>
readers_
;
std
::
thread
scheduler_
;
std
::
vector
<
std
::
thread
>
prefetchers_
;
size_t
buffer_size_
;
reader
::
BlockingQueue
<
size_t
>*
waiting_reader_idx_
;
reader
::
BlockingQueue
<
size_t
>*
available_thread_idx_
;
reader
::
BlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>*
buffer_
;
void
MoveFrontPendingToDone
()
{
pending_
.
front
()
->
Shutdown
();
pending_
.
front
()
->
Start
();
done_
.
emplace
(
move
(
pending_
.
front
()));
pending_
.
pop
();
}
std
::
queue
<
std
::
unique_ptr
<
framework
::
ReaderBase
>>
pending_
;
std
::
queue
<
std
::
unique_ptr
<
framework
::
ReaderBase
>>
done_
;
};
void
MultiFileReader
::
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
{
if
(
!
buffer_
->
Receive
(
out
))
{
out
->
clear
();
}
}
class
PreemptiveReaderContainer
:
public
IReaderContainer
{
using
ReaderList
=
std
::
list
<
std
::
unique_ptr
<
framework
::
ReaderBase
>>
;
void
MultiFileReader
::
StartNewScheduler
()
{
size_t
thread_num
=
prefetchers_
.
size
();
waiting_reader_idx_
=
new
reader
::
BlockingQueue
<
size_t
>
(
readers_
.
size
());
available_thread_idx_
=
new
reader
::
BlockingQueue
<
size_t
>
(
thread_num
);
buffer_
=
new
reader
::
BlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>
(
buffer_size_
);
struct
FutureItem
{
std
::
vector
<
framework
::
LoDTensor
>
data_
;
ReaderList
::
iterator
reader_it_
;
std
::
exception_ptr
exception_
;
};
for
(
size_t
i
=
0
;
i
<
readers_
.
size
();
++
i
)
{
waiting_reader_idx_
->
Send
(
i
);
}
waiting_reader_idx_
->
Close
();
for
(
size_t
i
=
0
;
i
<
thread_num
;
++
i
)
{
available_thread_idx_
->
Send
(
i
);
}
using
FutureList
=
std
::
list
<
std
::
future
<
FutureItem
>>
;
scheduler_
=
std
::
thread
([
this
]
{
ScheduleThreadFunc
();
});
}
public:
explicit
PreemptiveReaderContainer
(
size_t
thread_num
)
:
pool_
(
thread_num
)
{
}
void
MultiFileReader
::
EndScheduler
()
{
available_thread_idx_
->
Close
();
buffer_
->
Close
();
waiting_reader_idx_
->
Close
();
if
(
scheduler_
.
joinable
())
{
scheduler_
.
join
();
}
delete
buffer_
;
delete
available_thread_idx_
;
delete
waiting_reader_idx_
;
}
void
MultiFileReader
::
ScheduleThreadFunc
()
{
VLOG
(
5
)
<<
"MultiFileReader schedule thread starts."
;
size_t
completed_thread_num
=
0
;
size_t
thread_idx
;
while
(
available_thread_idx_
->
Receive
(
&
thread_idx
))
{
std
::
thread
&
prefetcher
=
prefetchers_
[
thread_idx
];
if
(
prefetcher
.
joinable
())
{
prefetcher
.
join
();
}
size_t
reader_idx
;
if
(
waiting_reader_idx_
->
Receive
(
&
reader_idx
))
{
// Still have files to read. Start a new prefetch thread.
prefetcher
=
std
::
thread
([
this
,
reader_idx
,
thread_idx
]
{
PrefetchThreadFunc
(
reader_idx
,
thread_idx
);
});
}
else
{
// No more file to read.
++
completed_thread_num
;
if
(
completed_thread_num
==
prefetchers_
.
size
())
{
buffer_
->
Close
();
break
;
void
Stop
()
override
{
if
(
!
pending_
.
empty
())
{
for
(
auto
&
reader
:
pending_
)
{
reader
->
Shutdown
();
}
for
(
auto
&
fu
:
futures_
)
{
fu
.
wait
();
}
futures_
.
clear
();
for
(
auto
&
reader
:
pending_
)
{
reader
->
Start
();
done_
.
emplace_back
(
std
::
move
(
reader
));
}
pending_
.
clear
();
bool
timeout
;
complete_queue_
.
PopAll
(
1000
,
&
timeout
);
PADDLE_ENFORCE
(
!
timeout
);
}
}
// If users invoke Shutdown() when scheduler is running, it will close the
// 'avaiable_thread_idx_' and prefecther threads have no way to tell scheduler
// to release their resource. So a check is needed before scheduler ends.
for
(
auto
&
p
:
prefetchers_
)
{
if
(
p
.
joinable
())
{
p
.
join
();
void
Start
()
override
{
for
(
auto
&
reader
:
done_
)
{
AppendReader
(
std
::
move
(
reader
));
}
done_
.
clear
();
}
VLOG
(
5
)
<<
"MultiFileReader schedule thread terminates."
;
}
void
MultiFileReader
::
PrefetchThreadFunc
(
size_t
reader_idx
,
size_t
thread_idx
)
{
VLOG
(
5
)
<<
"The prefetch thread of file idx '"
<<
reader_idx
<<
"' starts."
;
std
::
unique_ptr
<
framework
::
ReaderBase
>&
reader
=
readers_
[
reader_idx
];
while
(
true
)
{
std
::
vector
<
framework
::
LoDTensor
>
ins
;
reader
->
ReadNext
(
&
ins
);
if
(
ins
.
empty
())
{
reader
->
Shutdown
();
reader
->
Start
();
break
;
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
if
(
!
pending_
.
empty
())
{
auto
future_it
=
complete_queue_
.
Pop
();
FutureItem
item
=
future_it
->
get
();
if
(
item
.
exception_
)
{
for
(
auto
it
=
futures_
.
begin
();
it
!=
futures_
.
end
();
++
it
)
{
if
(
it
!=
future_it
)
{
it
->
wait
();
// Wait all other threads complete.
}
}
std
::
rethrow_exception
(
item
.
exception_
);
}
else
if
(
item
.
data_
.
empty
())
{
// reader done.
done_
.
emplace_back
(
std
::
move
(
*
item
.
reader_it_
));
pending_
.
erase
(
item
.
reader_it_
);
futures_
.
erase
(
future_it
);
ReadNext
(
out
);
}
else
{
*
out
=
item
.
data_
;
// continue read async
ReadAsync
(
item
.
reader_it_
,
&
future_it
);
}
}
else
{
out
->
clear
();
}
try
{
buffer_
->
Send
(
std
::
move
(
ins
));
}
catch
(
paddle
::
platform
::
EnforceNotMet
e
)
{
VLOG
(
5
)
<<
"WARNING: The buffer channel has been closed. The prefetch "
"thread of file idx '"
<<
reader_idx
<<
"' will terminate."
;
break
;
}
private:
void
AppendReader
(
std
::
unique_ptr
<
framework
::
ReaderBase
>&&
reader
)
override
{
pending_
.
emplace_back
(
std
::
move
(
reader
));
auto
reader_it
=
pending_
.
end
();
--
reader_it
;
futures_
.
emplace_back
();
auto
future_it
=
futures_
.
end
();
--
future_it
;
ReadAsync
(
reader_it
,
&
future_it
);
}
void
ReadAsync
(
const
ReaderList
::
iterator
&
reader_it
,
FutureList
::
iterator
*
future_it_ptr
)
{
auto
&
future_it
=
*
future_it_ptr
;
*
future_it
=
pool_
.
enqueue
([
reader_it
,
future_it
,
this
]
{
try
{
FutureItem
item
;
item
.
reader_it_
=
reader_it
;
(
*
reader_it
)
->
ReadNext
(
&
item
.
data_
);
if
(
item
.
data_
.
empty
())
{
(
*
reader_it
)
->
Shutdown
();
(
*
reader_it
)
->
Start
();
}
complete_queue_
.
Push
(
future_it
);
return
item
;
}
catch
(...)
{
FutureItem
item
;
item
.
exception_
=
std
::
current_exception
();
complete_queue_
.
Push
(
future_it
);
return
item
;
}
});
}
FutureList
futures_
;
ThreadPool
pool_
;
framework
::
BlockingQueue
<
FutureList
::
iterator
>
complete_queue_
;
std
::
list
<
std
::
unique_ptr
<
framework
::
ReaderBase
>>
pending_
;
std
::
list
<
std
::
unique_ptr
<
framework
::
ReaderBase
>>
done_
;
};
class
MultiFileReader
:
public
framework
::
ReaderBase
{
public:
MultiFileReader
(
const
std
::
vector
<
std
::
string
>&
file_names
,
std
::
unique_ptr
<
IReaderContainer
>&&
container
)
:
container_
(
std
::
move
(
container
))
{
for
(
auto
&
fn
:
file_names
)
{
container_
->
AppendReader
(
CreateReaderByFileName
(
fn
));
}
}
if
(
!
available_thread_idx_
->
Send
(
thread_idx
))
{
VLOG
(
5
)
<<
"WARNING: The available_thread_idx_ channel has been closed. "
"Fail to send thread_idx."
;
~
MultiFileReader
()
{
container_
->
Stop
();
}
protected:
void
ReadNextImpl
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
container_
->
ReadNext
(
out
);
}
VLOG
(
5
)
<<
"The prefetch thread of file idx '"
<<
reader_idx
<<
"' terminates."
;
}
void
ShutdownImpl
()
override
{
container_
->
Stop
();
}
void
StartImpl
()
override
{
container_
->
Start
();
}
private:
std
::
unique_ptr
<
IReaderContainer
>
container_
;
};
class
OpenFilesOp
:
public
framework
::
OperatorBase
{
public:
...
...
@@ -173,13 +223,27 @@ class OpenFilesOp : public framework::OperatorBase {
"shape concat's length."
);
const
auto
&
file_names
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"file_names"
);
PADDLE_ENFORCE
(
!
file_names
.
empty
(),
"No file to be read!"
);
const
size_t
thread_num
=
Attr
<
int
>
(
"thread_num"
);
const
size_t
buffer_size
=
Attr
<
int
>
(
"buffer_size"
);
bool
is_test
=
Attr
<
bool
>
(
"is_test"
);
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
out
->
Reset
(
std
::
make_shared
<
MultiFileReader
>
(
file_names
,
thread_num
,
buffer_size
));
std
::
unique_ptr
<
IReaderContainer
>
container
;
if
(
is_test
)
{
container
.
reset
(
new
OrderedReaderContainer
());
}
else
{
container
.
reset
(
new
PreemptiveReaderContainer
(
static_cast
<
size_t
>
(
Attr
<
int
>
(
"thread_num"
))));
}
std
::
shared_ptr
<
framework
::
ReaderBase
>
reader
(
new
MultiFileReader
(
file_names
,
std
::
move
(
container
)));
auto
buffer_size
=
Attr
<
int
>
(
"buffer_size"
);
if
(
buffer_size
>
1
)
{
reader
=
framework
::
MakeDecoratedReader
<
BufferedReader
>
(
reader
,
platform
::
CPUPlace
(),
buffer_size
);
}
out
->
Reset
(
reader
);
}
};
...
...
@@ -187,9 +251,7 @@ class OpenFilesOpMaker : public FileReaderMakerBase {
protected:
void
Apply
()
override
{
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"file_names"
,
"Files to be read."
);
AddAttr
<
int
>
(
"thread_num"
,
"The maximal concurrent prefetch thread number."
)
.
GreaterThan
(
0
);
AddAttr
<
int
>
(
"buffer_size"
,
"The size of prefetch buffer."
).
GreaterThan
(
0
);
AddAttr
<
bool
>
(
"is_test"
,
"Used for testing data."
).
SetDefault
(
false
);
AddComment
(
R"DOC(
OpenFiles Operator
...
...
@@ -197,6 +259,11 @@ class OpenFilesOpMaker : public FileReaderMakerBase {
An OpenFilesOp creates a MultiFileReader, which is able to
read data multi-threaded from multiple files.
)DOC"
);
AddAttr
<
int
>
(
"thread_num"
,
"The maximal concurrent prefetch thread number. Used only "
"when is_test = False"
);
AddAttr
<
int
>
(
"buffer_size"
,
"The reading buffer of these files."
)
.
GreaterThan
(
0
);
}
};
...
...
paddle/fluid/recordio/scanner.cc
浏览文件 @
b0630938
...
...
@@ -28,6 +28,7 @@ Scanner::Scanner(std::unique_ptr<std::istream> &&stream)
Scanner
::
Scanner
(
const
std
::
string
&
filename
)
:
stream_
(
new
std
::
ifstream
(
filename
)),
parser_
(
*
stream_
)
{
PADDLE_ENFORCE
(
static_cast
<
bool
>
(
*
stream_
),
"Cannot open file %s"
,
filename
);
Reset
();
}
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
b0630938
...
...
@@ -600,11 +600,11 @@ function main() {
cicheck
)
cmake_gen
${
PYTHON_ABI
:-
""
}
build
assert_api_not_changed
run_test
gen_capi_package
gen_fluid_inference_lib
test_fluid_inference_lib
assert_api_not_changed
;;
*
)
print_usage
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
b0630938
...
...
@@ -12,14 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
multiprocessing
import
threading
from
..
import
core
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
default_startup_program
,
Program
from
..unique_name
import
generate
as
unique_name
from
..data_feeder
import
DataFeeder
from
control_flow
import
BlockGuard
from
..layer_helper
import
LayerHelper
from
layer_function_generator
import
templatedoc
from
..
import
core
from
..executor
import
global_scope
from
layer_function_generator
import
generate_layer_fn
,
templatedoc
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
\
default_startup_program
,
program_guard
,
Program
from
..layer_helper
import
LayerHelper
from
..unique_name
import
generate
as
unique_name
__all__
=
[
'data'
,
'open_recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch'
,
...
...
@@ -445,7 +449,12 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return
monkey_patch_reader_methods
(
main_prog_var
)
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
):
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
,
name
=
None
,
use_double_buffer
=
True
):
"""
Create a reader and blocking queue for data feeding in Python
...
...
@@ -458,10 +467,13 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
using `close()` method when unused.
Args:
use_double_buffer(bool): Whether use double buffer or not.
capacity(int): The maximum capacity of the BlockingQueue.
shapes(list): List of tuples which declaring data shapes.
dtypes(list): List of strs which declaring data type.
lod_levels(list): List of ints which declaring data lod_level.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
tuple(Variable, BlockingQueue):
...
...
@@ -502,15 +514,23 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
if
lod_levels
is
None
:
lod_levels
=
[
0
]
*
len
(
shapes
)
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
if
name
is
None
:
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
reader_name
=
unique_name
(
'create_py_reader'
)
double_buffer_name
=
unique_name
(
'double_buffer'
)
else
:
queue_name
=
"_"
.
join
([
name
,
"queue"
])
reader_name
=
"_"
.
join
([
name
,
"reader"
])
double_buffer_name
=
"_"
.
join
([
name
,
"double_buffer"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
unique_name
(
'create_py_reader'
)
)
startup_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
startup_blk
.
append_op
(
type
=
'create_py_reader'
,
inputs
=
{
'blocking_queue'
:
queue_name
},
inputs
=
{
'blocking_queue'
:
[
queue_name
]
},
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
...
...
@@ -524,17 +544,96 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
return
monkey_patch_reader_methods
(
main_prog_var
),
feed_queue
reader
=
monkey_patch_reader_methods
(
main_prog_var
)
if
use_double_buffer
:
double_buffer_reader
=
double_buffer
(
reader
,
name
=
double_buffer_name
)
# we return a double buffer reader. However, the reset method comes from
# py_reader.
double_buffer_reader
.
reset
=
reader
.
reset
reader
=
double_buffer_reader
# monkey patch py_reader special methods
reader
.
queue
=
feed_queue
current_reset_method
=
reader
.
reset
reader
.
thread
=
None
reader
.
tensor_provider
=
None
reader
.
exited
=
False
def
start_provide_thread
(
func
):
def
__provider_thread__
():
for
tensors
in
func
():
array
=
core
.
LoDTensorArray
()
for
item
in
tensors
:
if
not
isinstance
(
item
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
item
,
core
.
CPUPlace
())
item
=
tmp
array
.
append
(
item
)
if
reader
.
exited
:
break
feed_queue
.
push
(
array
)
if
reader
.
exited
:
break
feed_queue
.
close
()
reader
.
thread
=
threading
.
Thread
(
target
=
__provider_thread__
)
reader
.
thread
.
start
()
def
__set_tensor_provider__
(
func
):
reader
.
tensor_provider
=
func
def
__set_paddle_reader__
(
paddle_reader
):
with
program_guard
(
Program
(),
Program
()):
feed_list
=
[]
counter
=
0
for
dtype
,
shape
,
lod_level
in
zip
(
dtypes
,
shapes
,
lod_levels
):
name
=
str
(
counter
)
feed_list
.
append
(
data
(
name
=
name
,
dtype
=
dtype
,
shape
=
shape
,
lod_level
=
lod_level
))
counter
+=
1
feeder
=
DataFeeder
(
feed_list
=
feed_list
,
place
=
core
.
CPUPlace
())
paddle_reader
=
feeder
.
decorate_reader
(
paddle_reader
,
multi_devices
=
False
)
def
__tensor_provider__
():
for
slots
in
paddle_reader
():
yield
[
slots
[
str
(
idx
)]
for
idx
in
xrange
(
counter
)]
__set_tensor_provider__
(
__tensor_provider__
)
def
__reset__
():
current_reset_method
()
if
reader
.
thread
is
not
None
and
reader
.
tensor_provider
is
not
None
:
reader
.
exited
=
True
reader
.
thread
.
join
()
reader
.
exited
=
False
def
__start__
():
start_provide_thread
(
reader
.
tensor_provider
)
reader
.
reset
=
__reset__
reader
.
decorate_tensor_provider
=
__set_tensor_provider__
reader
.
decorate_paddle_reader
=
__set_paddle_reader__
reader
.
start
=
__start__
return
reader
def
open_files
(
filenames
,
shapes
,
lod_levels
,
dtypes
,
thread_num
=
1
,
thread_num
=
None
,
buffer_size
=
None
,
pass_num
=
1
,
for_parallel
=
Tru
e
):
is_test
=
Non
e
):
"""
Open files
...
...
@@ -547,14 +646,14 @@ def open_files(filenames,
shapes(list): List of tuples which declaring data shapes.
lod_levels(list): List of ints which declaring data lod_level.
dtypes(list): List of strs which declaring data type.
thread_num(int): The maximal concurrent prefetch thread number.
buffer_size(int|None): The size of prefetch buffer. If it is setted None,
buffer size will be thread_num * 3.
Default: None
thread_num(None): The number of thread to read files.
Default: min(len(filenames), cpu_number).
buffer_size(None): The buffer size of reader. Default: 3 * thread_num
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Default: True
is_test(bool|None): Whether `open_files` used for testing or not. If it
is used for testing, the order of data generated is same as the file
order. Otherwise, it is not guaranteed the order of data is same
between every epoch. [Default: False].
Returns:
Variable: A Reader Variable via which we can get file data.
...
...
@@ -566,15 +665,21 @@ def open_files(filenames,
'./data2.recordio'],
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'],
thread_num=2,
buffer_size=2)
dtypes=['float32', 'int64'])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
"""
if
thread_num
is
None
:
thread_num
=
min
(
len
(
filenames
),
multiprocessing
.
cpu_count
())
else
:
thread_num
=
int
(
thread_num
)
if
buffer_size
is
None
:
buffer_size
=
thread_num
*
3
buffer_size
=
3
*
thread_num
else
:
buffer_size
=
int
(
buffer_size
)
if
isinstance
(
filenames
,
basestring
):
filenames
=
[
filenames
]
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
...
...
@@ -588,17 +693,18 @@ def open_files(filenames,
multi_file_reader_name
=
unique_name
(
'multi_file_reader'
)
startup_blk
=
default_startup_program
().
current_block
()
startup_reader
=
startup_blk
.
create_var
(
name
=
multi_file_reader_name
)
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'ranks'
:
ranks
,
'file_names'
:
filenames
,
'thread_num'
:
thread_num
,
'buffer_size'
:
buffer_size
}
if
is_test
is
not
None
:
attrs
[
'is_test'
]
=
is_test
startup_blk
.
append_op
(
type
=
'open_files'
,
outputs
=
{
'Out'
:
[
startup_reader
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'ranks'
:
ranks
,
'file_names'
:
filenames
,
'thread_num'
:
thread_num
,
'buffer_size'
:
buffer_size
})
type
=
'open_files'
,
outputs
=
{
'Out'
:
[
startup_reader
]},
attrs
=
attrs
)
startup_reader
.
desc
.
set_dtypes
(
dtypes
)
startup_reader
.
persistable
=
True
...
...
python/paddle/fluid/tests/demo/pyreader.py
0 → 100644
浏览文件 @
b0630938
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
import
paddle
import
paddle.dataset.mnist
as
mnist
import
paddle.fluid
as
fluid
import
paddle.v2
def
network
(
is_train
):
reader
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
((
-
1
,
784
),
(
-
1
,
1
)),
dtypes
=
(
'float32'
,
'int64'
),
name
=
"train_reader"
if
is_train
else
"test_reader"
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
for
i
in
xrange
(
2
):
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
100
,
act
=
'tanh'
)
hidden
=
fluid
.
layers
.
dropout
(
hidden
,
dropout_prob
=
0.5
,
is_test
=
not
is_train
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
return
fluid
.
layers
.
mean
(
loss
),
reader
def
main
():
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
loss
,
train_reader
=
network
(
True
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
adam
.
minimize
(
loss
)
test_prog
=
fluid
.
Program
()
test_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_prog
,
test_startup
):
with
fluid
.
unique_name
.
guard
():
test_loss
,
test_reader
=
network
(
False
)
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
)).
run
(
startup_prog
)
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
)).
run
(
test_startup
)
trainer
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
train_prog
)
tester
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
share_vars_from
=
trainer
,
main_program
=
test_prog
)
train_reader
.
decorate_paddle_reader
(
paddle
.
v2
.
reader
.
shuffle
(
paddle
.
batch
(
mnist
.
train
(),
512
),
buf_size
=
8192
))
test_reader
.
decorate_paddle_reader
(
paddle
.
batch
(
mnist
.
test
(),
512
))
for
epoch_id
in
xrange
(
10
):
train_reader
.
start
()
try
:
while
True
:
print
'train_loss'
,
numpy
.
array
(
trainer
.
run
(
fetch_list
=
[
loss
.
name
]))
except
fluid
.
core
.
EOFException
:
print
'End of epoch'
,
epoch_id
train_reader
.
reset
()
test_reader
.
start
()
try
:
while
True
:
print
'test loss'
,
numpy
.
array
(
tester
.
run
(
fetch_list
=
[
test_loss
.
name
]))
except
fluid
.
core
.
EOFException
:
print
'End of testing'
test_reader
.
reset
()
if
__name__
==
'__main__'
:
main
()
python/paddle/fluid/tests/demo/text_classification/convert_data_to_recordio.py
浏览文件 @
b0630938
...
...
@@ -31,7 +31,10 @@ def load_vocab(filename):
# load word dict with paddle inner function
word_dict
=
load_vocab
(
sys
.
argv
[
1
])
if
len
(
sys
.
argv
)
==
1
:
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
else
:
word_dict
=
load_vocab
(
sys
.
argv
[
1
])
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
print
"Dict dim = "
,
len
(
word_dict
)
...
...
python/paddle/fluid/tests/demo/text_classification/train.py
浏览文件 @
b0630938
...
...
@@ -41,16 +41,14 @@ def network_cfg(is_train, pass_num=100):
pass_num
=
pass_num
,
shapes
=
[[
-
1
,
1
],
[
-
1
,
1
]],
lod_levels
=
[
1
,
0
],
dtypes
=
[
'int64'
,
'int64'
],
thread_num
=
1
)
dtypes
=
[
'int64'
,
'int64'
])
test_file_obj
=
fluid
.
layers
.
open_files
(
filenames
=
TEST_FILES
,
pass_num
=
1
,
shapes
=
[[
-
1
,
1
],
[
-
1
,
1
]],
lod_levels
=
[
1
,
0
],
dtypes
=
[
'int64'
,
'int64'
],
thread_num
=
1
)
dtypes
=
[
'int64'
,
'int64'
])
if
is_train
:
file_obj
=
fluid
.
layers
.
shuffle
(
train_file_obj
,
buffer_size
=
1000
)
...
...
python/paddle/fluid/tests/unittests/test_data_balance.py
浏览文件 @
b0630938
...
...
@@ -142,8 +142,7 @@ class TestDataBalance(unittest.TestCase):
filenames
=
[
self
.
lod_data_file_name
],
shapes
=
[[
-
1
,
3
],
[
-
1
,
1
]],
lod_levels
=
[
1
,
0
],
dtypes
=
[
'float32'
,
'int32'
],
thread_num
=
1
)
dtypes
=
[
'float32'
,
'int32'
])
ins
,
label
=
fluid
.
layers
.
read_file
(
data_reader
)
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
use_cuda
else
fluid
.
CPUPlace
()
...
...
@@ -156,7 +155,7 @@ class TestDataBalance(unittest.TestCase):
main_program
=
main_prog
,
build_strategy
=
build_strategy
)
if
(
parallel_exe
.
device_count
>
self
.
batch_size
)
:
if
parallel_exe
.
device_count
>
self
.
batch_size
:
print
(
"WARNING: Unittest TestDataBalance skipped.
\
For the result is not correct when device count
\
is larger than batch size."
)
...
...
@@ -190,3 +189,7 @@ class TestDataBalance(unittest.TestCase):
def
test_all
(
self
):
self
.
main
()
self
.
main_lod
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multi_file_reader.py
浏览文件 @
b0630938
...
...
@@ -39,17 +39,17 @@ class TestMultipleReader(unittest.TestCase):
copyfile
(
'./mnist_0.recordio'
,
'./mnist_1.recordio'
)
copyfile
(
'./mnist_0.recordio'
,
'./mnist_2.recordio'
)
def
main
(
self
,
thread_num
):
def
main
(
self
,
is_test
=
False
):
file_list
=
[
'./mnist_0.recordio'
,
'./mnist_1.recordio'
,
'./mnist_2.recordio'
]
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data_files
=
fluid
.
layers
.
open_files
(
filenames
=
file_list
,
thread_num
=
thread_num
,
shapes
=
[(
-
1
,
784
),
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
dtypes
=
[
'float32'
,
'int64'
],
is_test
=
is_test
)
img
,
label
=
fluid
.
layers
.
read_file
(
data_files
)
if
fluid
.
core
.
is_compiled_with_cuda
():
...
...
@@ -71,6 +71,9 @@ class TestMultipleReader(unittest.TestCase):
self
.
assertEqual
(
batch_count
,
self
.
num_batch
*
3
)
def
test_main
(
self
):
self
.
main
(
thread_num
=
3
)
# thread number equals to file number
self
.
main
(
thread_num
=
10
)
# thread number is larger than file number
self
.
main
(
thread_num
=
2
)
# thread number is less than file number
self
.
main
(
is_test
=
False
)
self
.
main
(
is_test
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
b0630938
...
...
@@ -33,9 +33,7 @@ def simple_fc_net(use_feed):
filenames
=
[
MNIST_RECORDIO_FILE
],
shapes
=
[[
-
1
,
784
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
],
thread_num
=
1
,
for_parallel
=
True
)
dtypes
=
[
'float32'
,
'int64'
])
reader
=
fluid
.
layers
.
io
.
double_buffer
(
reader
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
...
...
@@ -61,9 +59,7 @@ def fc_with_batchnorm(use_feed):
filenames
=
[
MNIST_RECORDIO_FILE
],
shapes
=
[[
-
1
,
784
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
],
thread_num
=
1
,
for_parallel
=
True
)
dtypes
=
[
'float32'
,
'int64'
])
reader
=
fluid
.
layers
.
io
.
double_buffer
(
reader
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
...
...
python/paddle/fluid/tests/unittests/test_py_reader_push_pop.py
浏览文件 @
b0630938
...
...
@@ -45,12 +45,12 @@ class TestPyReader(unittest.TestCase):
)
else
fluid
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
data_file
,
feed_queue
=
fluid
.
layers
.
py_reader
(
data_file
=
fluid
.
layers
.
py_reader
(
capacity
=
self
.
capacity
,
dtypes
=
self
.
dtypes
,
lod_levels
=
self
.
lod_levels
,
shapes
=
self
.
shapes
)
feed_queue
=
data_file
.
queue
read_out_data
=
fluid
.
layers
.
read_file
(
data_file
)
self
.
inputs
=
[]
...
...
python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py
浏览文件 @
b0630938
...
...
@@ -52,11 +52,13 @@ def simple_fc_net(in_size,
batch_size
,
queue_capacity
,
use_double_buffer
=
False
):
reader
,
feed_queue
=
fluid
.
layers
.
py_reader
(
reader
=
fluid
.
layers
.
py_reader
(
capacity
=
queue_capacity
,
shapes
=
[[
-
1
,
in_size
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
dtypes
=
[
'float32'
,
'int64'
],
use_double_buffer
=
False
)
feed_queue
=
reader
.
queue
reader
=
fluid
.
layers
.
batch
(
reader
,
batch_size
=
batch_size
)
if
use_double_buffer
:
reader
=
fluid
.
layers
.
double_buffer
(
reader
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录